零基础上手,秒识别检测,IDEA研究院发布全新T-Rex模型

2023-12-04 03:44

本文主要是介绍零基础上手,秒识别检测,IDEA研究院发布全新T-Rex模型,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目标检测作为当前计算机视觉落地的热点技术之一,已被广泛应用于自动驾驶、智慧园区、工业检测和卫星遥感等场景。开发者在研究相关目标检测技术时,通常需熟练掌握图像目标检测框架,如通用目标检测框架 YOLO 系列,旋转目标检测框架 R3Det 等技术,学习门槛较高,还需不断优化和改进算法,来获得理想的目标检测效果。随着大模型的发展,有效帮助开发者降低目标检测的使用门槛。

在2023 IDEA大会,IDEA研究院发布最新视觉提示(Visual Prompt)模型T-Rex,帮助释放计算机视觉更多应用场景。小编在上手使用T-Rex模型,直呼太香了!无需设计算法,开箱即用,简单通过拖拽方框,框住想识别的物体,点击“开始检测”,就自动将相似的结果识别出来:

下面小编带大家体验一把!

零基础上手,秒识别检测,T-Rex模型来了!

打开视觉提示模型T-Rex的模型实验室官网:DeepDataSpace | The Go-To Choice for CV Data Visualization, Annotation, and Model Analysis,选择或者上传你想要检测的图像:

框住想要识别的物体,点击开始检测,秒出结果:

是不是很简单便捷?

其实背后的T-Rex模型大有来头!

今年4月,IDEA研究院发布的Grounded SAM (Grounding DINO + SAM),在Github已获得 11K Star,区别于只支持文字提示的Grounded SAM,T-Rex模型着重打造强交互的视觉提示功能。无需重新训练或微调,即可检测模型在训练阶段从未见过的物体。该模型不仅可应用于包括计数在内的所有检测类任务,还为智能交互标注场景提供新的解决方案,通过直观的视觉反馈与强交互性,也有助于提升检测的效率与精准度。目前,T-Rex 可应用在农业、零售、医疗、电子等行业。

据官网显示,T-Rex模型有以下四大特性:

开放集:不受预定义类别限制,具有检测一切物体的能力

视觉提示:利用视觉示例指定检测目标,克服罕见、复杂物体难以用文字充分表达的问题,提高提示效率

直观的视觉反馈:提供边界框等直观视觉反馈,帮助用户高效评估检测结果

交互性:用户便捷参与检测过程,对模型结果进行纠错

除了上面笔者试用的最基础的单轮提示模式,目前T-Rex模型还支持以下三种进阶模式:

·       多轮正例模式:适用于视觉提示不够精准造成漏检的场景

·       正例+负例模式: 适用于视觉提示带有二义性造成误检的场景

·       跨图模式:适用于通过单张参考图提示检测他图的场景

大家可以多多尝试!

为什么是T-Rex?

我们已迈入“大模型时代”,在许多领域大模型都展现出巨大潜力和价值。 如今我们可以简单用一句话、一个提示词就可以让AI帮助我们生成一张图片、一篇文章。然而在一些情况下,例如工业场景中的物体在日常生活中较为罕见,难以用语言描述。在此情况下,视觉提示显然是更高效的方法。T-Rex通过图片来提示,达到 “一图胜千言”的准确与高效。

谈及计算机视觉的发展,IDEA研究院创院理事长、美国国家工程院外籍院士沈向洋表示,首先是计算机视觉的应用场景长尾,其次是其场景碎片化,每个应用场景不一样。他出,计算机视觉领域在呼唤通用大模型的来临。以GPT-4V为代表的多模态大模型,是在语言能力上增加视觉能力;IDEA研究院的计算机视觉团队则选择了另一条路径,先将基础的视觉能力做到极致,再增加语言能力。

仔细思考,大模型的意义是让我们从判别式AI走向深层次判别式的AI,前者从数据和信号中去提取特征进行识别,完成像人脸识别语音识别、图像识别等任务,后者可以基于海量数据训练生成文字、语言、图片、视频等,更加智能、高效,有效提高生产力。毋庸置疑,通过之前的Grounded SAM发布,到如今T-Rex的推出,IDEA研究院走出自己的计算机视觉之路。

想了解更多T-Rex详情,可查看GitHub:trex-counting.github.io

这篇关于零基础上手,秒识别检测,IDEA研究院发布全新T-Rex模型的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/451983

相关文章

一文详解如何在idea中快速搭建一个Spring Boot项目

《一文详解如何在idea中快速搭建一个SpringBoot项目》IntelliJIDEA作为Java开发者的‌首选IDE‌,深度集成SpringBoot支持,可一键生成项目骨架、智能配置依赖,这篇文... 目录前言1、创建项目名称2、勾选需要的依赖3、在setting中检查maven4、编写数据源5、开启热

OpenCV实现实时颜色检测的示例

《OpenCV实现实时颜色检测的示例》本文主要介绍了OpenCV实现实时颜色检测的示例,通过HSV色彩空间转换和色调范围判断实现红黄绿蓝颜色检测,包含视频捕捉、区域标记、颜色分析等功能,具有一定的参考... 目录一、引言二、系统概述三、代码解析1. 导入库2. 颜色识别函数3. 主程序循环四、HSV色彩空间

从基础到进阶详解Pandas时间数据处理指南

《从基础到进阶详解Pandas时间数据处理指南》Pandas构建了完整的时间数据处理生态,核心由四个基础类构成,Timestamp,DatetimeIndex,Period和Timedelta,下面我... 目录1. 时间数据类型与基础操作1.1 核心时间对象体系1.2 时间数据生成技巧2. 时间索引与数据

Python基于微信OCR引擎实现高效图片文字识别

《Python基于微信OCR引擎实现高效图片文字识别》这篇文章主要为大家详细介绍了一款基于微信OCR引擎的图片文字识别桌面应用开发全过程,可以实现从图片拖拽识别到文字提取,感兴趣的小伙伴可以跟随小编一... 目录一、项目概述1.1 开发背景1.2 技术选型1.3 核心优势二、功能详解2.1 核心功能模块2.

安装centos8设置基础软件仓库时出错的解决方案

《安装centos8设置基础软件仓库时出错的解决方案》:本文主要介绍安装centos8设置基础软件仓库时出错的解决方案,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐... 目录安装Centos8设置基础软件仓库时出错版本 8版本 8.2.200android4版本 javas

IDEA如何实现远程断点调试jar包

《IDEA如何实现远程断点调试jar包》:本文主要介绍IDEA如何实现远程断点调试jar包的问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录问题步骤总结问题以jar包的形式运行Spring Boot项目时报错,但是在IDEA开发环境javascript下编译

IDEA中Maven Dependencies出现红色波浪线的原因及解决方法

《IDEA中MavenDependencies出现红色波浪线的原因及解决方法》在使用IntelliJIDEA开发Java项目时,尤其是基于Maven的项目,您可能会遇到MavenDependenci... 目录一、问题概述二、解决步骤2.1 检查 Maven 配置2.2 更新 Maven 项目2.3 清理本

Python验证码识别方式(使用pytesseract库)

《Python验证码识别方式(使用pytesseract库)》:本文主要介绍Python验证码识别方式(使用pytesseract库),具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全... 目录1、安装Tesseract-OCR2、在python中使用3、本地图片识别4、结合playwrigh

详解如何使用Python从零开始构建文本统计模型

《详解如何使用Python从零开始构建文本统计模型》在自然语言处理领域,词汇表构建是文本预处理的关键环节,本文通过Python代码实践,演示如何从原始文本中提取多尺度特征,并通过动态调整机制构建更精确... 目录一、项目背景与核心思想二、核心代码解析1. 数据加载与预处理2. 多尺度字符统计3. 统计结果可

Linux基础命令@grep、wc、管道符的使用详解

《Linux基础命令@grep、wc、管道符的使用详解》:本文主要介绍Linux基础命令@grep、wc、管道符的使用,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐... 目录grep概念语法作用演示一演示二演示三,带选项 -nwc概念语法作用wc,不带选项-c,统计字节数-