Python读取栅格遥感影像并加以辐射校正后导出为Excel的一列数据

本文主要是介绍Python读取栅格遥感影像并加以辐射校正后导出为Excel的一列数据,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

  本文介绍基于Python语言中的gdal模块,读取一景.tif格式的栅格遥感影像文件,提取其中每一个像元的像素数值,对像素值加以计算(辐射定标)后,再以一列数据的形式将计算后的各像元像素数据保存在一个.csv格式文件中的方法。

  首先,我们明确一下本文的需求。现在有一个栅格遥感影像文件,其为.tiff格式的文件(但其实和.tif格式文件的操作方法是一样的),且像元的数值都是真实数值乘上10000之后的。这一遥感影像如下图所示,可以看到其各个波段的像元像素数据都是几百、几千的范围。

  我们现在希望,对于这一景遥感影像的第一个波段(如果大家需要对多个波段加以这一操作,那么就在本文的代码中加以循环,分别对多个波段依次加以同样的处理就好),提取出其中每一个像元的数值;随后对提取出来的数据加以辐射定标,即除以10000,并将结果保存在一个.csv格式文件中,且以一列的形式来保存。这里本文之所以需要用多行一列而非多行多列矩阵格式来存放数据,是因为后面需要将这些像素数据当作神经网络的预测样本,即一行表示一个样本,所以就需要保存为多行一列;如果大家需要保存为多行多列矩阵格式,那代码的思路还是一致的,就是在导出数据之前将其保存为二维矩阵格式的变量就好。

  知道了需求,我们就可以开始代码的撰写;具体代码如下。

# -*- coding: utf-8 -*-
"""
Created on Wed Nov 29 01:32:28 2023@author: fkxxgis
"""import csv
from osgeo import gdalfile_path = "E:/04_Reconstruction/05_Image_Test/GF1WFV4.16m.2021252035621.48STB.000000_SR.tiff"
dataset = gdal.Open(file_path, gdal.GA_ReadOnly)band = dataset.GetRasterBand(1)
data = band.ReadAsArray()
dataset = Nonedata = data * 0.0001
data_one_column = data.flatten()csv_file = "E:/04_Reconstruction/05_Image_Test/column_1.csv"
with open(csv_file, 'w', newline='') as file:writer = csv.writer(file)writer.writerow(["Value"])writer.writerows([[value] for value in data_one_column])

  其中,我们首先导入所需的库。在这里,csv库用于处理.csv格式文件,gdal库(从osgeo模块中导入)则用于读取和处理遥感影像文件;随后,定义遥感影像文件路径——file_path用来指定要读取的遥感影像文件的路径。

  接下来,我们打开遥感影像文件。dataset = gdal.Open(file_path, gdal.GA_ReadOnly)意味着我们以只读方式打开遥感影像文件,并将返回的Dataset对象赋值给变量dataset;随后,获取第一个波段的像元值,这可以通过band = dataset.GetRasterBand(1)来完成(需要注意,这里波段编号的索引是从1开始的);随后,data = band.ReadAsArray()意思是将波段的像元值读取为一个二维数组,并将结果赋值给变量data。随后,我们需要关闭遥感影像文件,通过将dataset变量设为None,释放对遥感影像文件的引用,从而关闭文件。

  其次,我们对像元值进行处理。首先,完成辐射定标,也就是通过data = data * 0.0001将像元值乘以0.0001;随后,将处理后的像元值按列展平——在这里,data_one_column = data.flatten()表示我们使用flatten()方法将二维数组展平为一维数组,并将结果赋值给变量data_one_column

  最后,将上述处理好的数据写入.csv格式文件。其中,csv_file指定要写入的.csv格式文件的路径;with open(csv_file, 'w', newline='') as file表示我们使用open()函数打开.csv格式文件,并创建一个csv.writer对象,同时指定文件的写入模式为覆盖写入'w'writer.writerow(["Value"])意味着我们写入.csv格式文件的第一行,即表头,这里是一个标题为Value的列;最后,writer.writerows([[value] for value in data_one_column])通过迭代data_one_column中的每个值,并将其作为单独的列表传递给writer.writerows()方法,从而将每个值写入.csv格式文件的一行中。

  运行上述代码,即可得到如下图所示的结果.csv格式文件。

  其中,第一行就是我们的列名;后面几行数据都是0,这是由于原本的遥感影像在左上角区域NoData值(大家看我们本文的第一张图就能看到)导致的。如果往下继续拖动这个.csv格式文件,就会看到处理后的非0数据了。

  至此,大功告成。

欢迎关注:疯狂学习GIS

这篇关于Python读取栅格遥感影像并加以辐射校正后导出为Excel的一列数据的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/451830

相关文章

shell脚本批量导出redis key-value方式

《shell脚本批量导出rediskey-value方式》为避免keys全量扫描导致Redis卡顿,可先通过dump.rdb备份文件在本地恢复,再使用scan命令渐进导出key-value,通过CN... 目录1 背景2 详细步骤2.1 本地docker启动Redis2.2 shell批量导出脚本3 附录总

Django开发时如何避免频繁发送短信验证码(python图文代码)

《Django开发时如何避免频繁发送短信验证码(python图文代码)》Django开发时,为防止频繁发送验证码,后端需用Redis限制请求频率,结合管道技术提升效率,通过生产者消费者模式解耦业务逻辑... 目录避免频繁发送 验证码1. www.chinasem.cn避免频繁发送 验证码逻辑分析2. 避免频繁

批量导入txt数据到的redis过程

《批量导入txt数据到的redis过程》用户通过将Redis命令逐行写入txt文件,利用管道模式运行客户端,成功执行批量删除以Product*匹配的Key操作,提高了数据清理效率... 目录批量导入txt数据到Redisjs把redis命令按一条 一行写到txt中管道命令运行redis客户端成功了批量删除k

精选20个好玩又实用的的Python实战项目(有图文代码)

《精选20个好玩又实用的的Python实战项目(有图文代码)》文章介绍了20个实用Python项目,涵盖游戏开发、工具应用、图像处理、机器学习等,使用Tkinter、PIL、OpenCV、Kivy等库... 目录① 猜字游戏② 闹钟③ 骰子模拟器④ 二维码⑤ 语言检测⑥ 加密和解密⑦ URL缩短⑧ 音乐播放

python panda库从基础到高级操作分析

《pythonpanda库从基础到高级操作分析》本文介绍了Pandas库的核心功能,包括处理结构化数据的Series和DataFrame数据结构,数据读取、清洗、分组聚合、合并、时间序列分析及大数据... 目录1. Pandas 概述2. 基本操作:数据读取与查看3. 索引操作:精准定位数据4. Group

Python pandas库自学超详细教程

《Pythonpandas库自学超详细教程》文章介绍了Pandas库的基本功能、安装方法及核心操作,涵盖数据导入(CSV/Excel等)、数据结构(Series、DataFrame)、数据清洗、转换... 目录一、什么是Pandas库(1)、Pandas 应用(2)、Pandas 功能(3)、数据结构二、安

Python使用Tenacity一行代码实现自动重试详解

《Python使用Tenacity一行代码实现自动重试详解》tenacity是一个专为Python设计的通用重试库,它的核心理念就是用简单、清晰的方式,为任何可能失败的操作添加重试能力,下面我们就来看... 目录一切始于一个简单的 API 调用Tenacity 入门:一行代码实现优雅重试精细控制:让重试按我

Python安装Pandas库的两种方法

《Python安装Pandas库的两种方法》本文介绍了三种安装PythonPandas库的方法,通过cmd命令行安装并解决版本冲突,手动下载whl文件安装,更换国内镜像源加速下载,最后建议用pipli... 目录方法一:cmd命令行执行pip install pandas方法二:找到pandas下载库,然后

SpringBoot多环境配置数据读取方式

《SpringBoot多环境配置数据读取方式》SpringBoot通过环境隔离机制,支持properties/yaml/yml多格式配置,结合@Value、Environment和@Configura... 目录一、多环境配置的核心思路二、3种配置文件格式详解2.1 properties格式(传统格式)1.

Python实现网格交易策略的过程

《Python实现网格交易策略的过程》本文讲解Python网格交易策略,利用ccxt获取加密货币数据及backtrader回测,通过设定网格节点,低买高卖获利,适合震荡行情,下面跟我一起看看我们的第一... 网格交易是一种经典的量化交易策略,其核心思想是在价格上下预设多个“网格”,当价格触发特定网格时执行买