分布式事务之说说TCC事务

2023-12-04 01:30
文章标签 分布式 事务 tcc

本文主要是介绍分布式事务之说说TCC事务,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在当前如火如荼的互联网浪潮下,如何应对海量数据、高并发成为大家面临的普遍难题。广大IT公司从以往的集中式网站架构,纷纷转向分布式的网站架构,随之而来的就是进行数据库拆分和应用拆分,如何在跨数据库、跨应用保证数据操作和业务操作的一致性、原子性,又成为需要解决的新的问题。从分布式事务的需求来源来看:跨数据库数据库拆分(水平、垂直)带来的分布式事务->保证跨库操作的原子性基于单个JVM跨应用应用拆分带来的分布式事务->保证跨应用业务操作的原子性跨JVM 跨应用的业务操作原子性要求,其实是比较常见的。比如在第三方支付场景中的组合支付,用户在电商网站购物后,要同时使用余额和红包支付该笔订单,而余额系统和红包系统分别是不同的应用系统,支付系统在调用这两个系统进行支付时,就需要保证余额扣减和红包使用要么同时成功,要么同时失败。 TCC事务的出现正是为了解决应用拆分带来的跨应用业务操作原子性的问题。当然,由于常规的XA事务(2PC,2 Phase Commit, 两阶段提交)性能上不尽如人意,也有通过TCC事务来解决数据库拆分的使用场景(如账务拆分),这个本文后续部分再详述。 故从整个系统架构的角度来看,分布式事务的不同方案是存在层次结构的:

TCC事务机制

1. TCC的机制

明眼一看就知道,TCC应该是三个英文单词的首字母缩写而来。没错,TCC分别对应Try、Confirm和Cancel三种操作,这三种操作的业务含义如下:Try:预留业务资源Confirm:确认执行业务操作Cancel:取消执行业务操作 稍稍对照下关系型数据库事务的三种操作:DML、Commit和Rollback,会发现和TCC有异曲同工之妙。在一个跨应用的业务操作中,Try操作是先把多个应用中的业务资源预留和锁定住,为后续的确认打下基础,类似的,DML操作要锁定数据库记录行,持有数据库资源;Confirm操作是在Try操作中涉及的所有应用均成功之后进行确认,使用预留的业务资源,和Commit类似;而Cancel则是当Try操作中涉及的所有应用没有全部成功,需要将已成功的应用进行取消(即Rollback回滚)。其中Confirm和Cancel操作是一对反向业务操作。

简而言之,TCC是应用层的2PC(2 Phase Commit, 两阶段提交),如果你将应用看做资源管理器的话。

详细来说,TCC每项操作需要做的事情如下:Try:尝试执行业务。完成所有业务检查(一致性)预留必须业务资源(准隔离性)Confirm:确认执行业务。真正执行业务不做任何业务检查只使用Try阶段预留的业务资源Cancel:取消执行业务释放Try阶段预留的业务资源 用一张图来说明TCC的机制:

一个完整的TCC事务参与方包括三部分:主业务服务:主业务服务为整个业务活动的发起方,如前面提到的组合支付场景,支付系统即是主业务服务。从业务服务:从业务服务负责提供TCC业务操作,是整个业务活动的操作方。从业务服务必须实现Try、Confirm和Cancel三个接口,供主业务服务调用。由于Confirm和Cancel操作可能被重复调用,故要求Confirm和Cancel两个接口必须是幂等的。前面的组合支付场景中的余额系统和红包系统即为从业务服务。

业务活动管理器:业务活动管理器管理控制整个业务活动,包括记录维护TCC全局事务的事务状态和每个从业务服务的子事务状态,并在业务活动提交时确认所有的TCC型操作的confirm操作,在业务活动取消时调用所有TCC型操作的cancel操作。

可见整个TCC事务对于主业务服务来说是透明的,其中业务活动管理器和从业务服务各自干了一部分工作。

2. TCC的优点和限制

TCC事务的优点如下:解决了跨应用业务操作的原子性问题,在诸如组合支付、账务拆分场景非常实用。TCC实际上把数据库层的二阶段提交上提到了应用层来实现,对于数据库来说是一阶段提交,规避了数据库层的2PC性能低下问题。 TCC事务的缺点,主要就一个:

TCC的Try、Confirm和Cancel操作功能需业务提供,开发成本高。

当然,对TCC事务的这个缺点是否是缺点,是一个见仁见智的事情。

3. 一个案例理解TCC

说实话,TCC的理论有点让人费解。故接下来将以账务拆分为例,对TCC事务的流程做一个描述,希望对理解TCC有所帮助。

账务拆分的业务场景如下,分别位于三个不同分库的帐户A、B、C,A和B一起向C转帐共80元:


Try:尝试执行业务。完成所有业务检查(一致性):检查A、B、C的帐户状态是否正常,帐户A的余额是否不少于30元,帐户B的余额是否不少于50元。预留必须业务资源(准隔离性):帐户A的冻结金额增加30元,帐户B的冻结金额增加50元,这样就保证不会出现其他并发进程扣减了这两个帐户的余额而导致在后续的真正转帐操作过程中,帐户A和B的可用余额不够的情况。Confirm:确认执行业务。真正执行业务:如果Try阶段帐户A、B、C状态正常,且帐户A、B余额够用,则执行帐户A给账户C转账30元、帐户B给账户C转账50元的转帐操作。不做任何业务检查:这时已经不需要做业务检查,Try阶段已经完成了业务检查。只使用Try阶段预留的业务资源:只需要使用Try阶段帐户A和帐户B冻结的金额即可。Cancel:取消执行业务释放Try阶段预留的业务资源:如果Try阶段部分成功,比如帐户A的余额够用,且冻结相应金额成功,帐户B的余额不够而冻结失败,则需要对帐户A做Cancel操作,将帐户A被冻结的金额解冻掉。 小结:到底要不要使用TCC 到底要不要使用TCC事务,取决于以下几点:是否真正有保证跨应用业务操作的原子性需求。研发上能否投入资源开发相对应的TCC接口。

当然还有最后一点,能否搞定一个稳定的、高可用的、扩展性强的TCC事务管理器。

一个问题,如果TCC事务在Try阶段所有参与方(从业务服务)成功了,但是Confirm阶段部分参与方(从业务服务)成功,如何处理?

TCC参考资料《大规模SOA系统中的分布式事务处理》:蚂蚁金服CTO程立早年的一篇关于分布式事务的PPT,里面有关于大规模SOA系统中包括TCC在内的各种分布式事务处理方案,是支付宝在分布式事务实践的经验精华。《Atomic Distributed Transactions: a RESTful Design》:ATOMIKOS公司的Guy Pardon和另一位作者一同写的一篇关于TCC事务设计方案的论文,对TCC的实现细节描述较为清楚。 原创文章转载请注明作者信息和原始出处”数据架构”。

关于作者

张磊,京东金融资深数据架构师



这篇关于分布式事务之说说TCC事务的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/451606

相关文章

Nginx分布式部署流程分析

《Nginx分布式部署流程分析》文章介绍Nginx在分布式部署中的反向代理和负载均衡作用,用于分发请求、减轻服务器压力及解决session共享问题,涵盖配置方法、策略及Java项目应用,并提及分布式事... 目录分布式部署NginxJava中的代理代理分为正向代理和反向代理正向代理反向代理Nginx应用场景

Java 线程池+分布式实现代码

《Java线程池+分布式实现代码》在Java开发中,池通过预先创建并管理一定数量的资源,避免频繁创建和销毁资源带来的性能开销,从而提高系统效率,:本文主要介绍Java线程池+分布式实现代码,需要... 目录1. 线程池1.1 自定义线程池实现1.1.1 线程池核心1.1.2 代码示例1.2 总结流程2. J

Spring的基础事务注解@Transactional作用解读

《Spring的基础事务注解@Transactional作用解读》文章介绍了Spring框架中的事务管理,核心注解@Transactional用于声明事务,支持传播机制、隔离级别等配置,结合@Tran... 目录一、事务管理基础1.1 Spring事务的核心注解1.2 注解属性详解1.3 实现原理二、事务事

MyBatis/MyBatis-Plus同事务循环调用存储过程获取主键重复问题分析及解决

《MyBatis/MyBatis-Plus同事务循环调用存储过程获取主键重复问题分析及解决》MyBatis默认开启一级缓存,同一事务中循环调用查询方法时会重复使用缓存数据,导致获取的序列主键值均为1,... 目录问题原因解决办法如果是存储过程总结问题myBATis有如下代码获取序列作为主键IdMappe

详解Spring中REQUIRED事务的回滚机制详解

《详解Spring中REQUIRED事务的回滚机制详解》在Spring的事务管理中,REQUIRED是最常用也是默认的事务传播属性,本文就来详细的介绍一下Spring中REQUIRED事务的回滚机制,... 目录1. REQUIRED 的定义2. REQUIRED 下的回滚机制2.1 异常触发回滚2.2 回

Spring 中的切面与事务结合使用完整示例

《Spring中的切面与事务结合使用完整示例》本文给大家介绍Spring中的切面与事务结合使用完整示例,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考... 目录 一、前置知识:Spring AOP 与 事务的关系 事务本质上就是一个“切面”二、核心组件三、完

Redis实现分布式锁全过程

《Redis实现分布式锁全过程》文章介绍Redis实现分布式锁的方法,包括使用SETNX和EXPIRE命令确保互斥性与防死锁,Redisson客户端提供的便捷接口,以及Redlock算法通过多节点共识... 目录Redis实现分布式锁1. 分布式锁的基本原理2. 使用 Redis 实现分布式锁2.1 获取锁

Redis分布式锁中Redission底层实现方式

《Redis分布式锁中Redission底层实现方式》Redission基于Redis原子操作和Lua脚本实现分布式锁,通过SETNX命令、看门狗续期、可重入机制及异常处理,确保锁的可靠性和一致性,是... 目录Redis分布式锁中Redission底层实现一、Redission分布式锁的基本使用二、Red

redis和redission分布式锁原理及区别说明

《redis和redission分布式锁原理及区别说明》文章对比了synchronized、乐观锁、Redis分布式锁及Redission锁的原理与区别,指出在集群环境下synchronized失效,... 目录Redis和redission分布式锁原理及区别1、有的同伴想到了synchronized关键字

分布式锁在Spring Boot应用中的实现过程

《分布式锁在SpringBoot应用中的实现过程》文章介绍在SpringBoot中通过自定义Lock注解、LockAspect切面和RedisLockUtils工具类实现分布式锁,确保多实例并发操作... 目录Lock注解LockASPect切面RedisLockUtils工具类总结在现代微服务架构中,分布