SHAP(五):使用 XGBoost 进行人口普查收入分类

2023-12-03 23:15

本文主要是介绍SHAP(五):使用 XGBoost 进行人口普查收入分类,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

SHAP(五):使用 XGBoost 进行人口普查收入分类

本笔记本演示了如何使用 XGBoost 预测个人年收入超过 5 万美元的概率。 它使用标准 UCI 成人收入数据集。 要下载此笔记本的副本,请访问 github。

XGBoost 等梯度增强机方法对于具有多种形式的表格样式输入数据的此类预测问题来说是最先进的。 Tree SHAP(arXiv 论文)允许精确计算树集成方法的 SHAP 值,并已直接集成到 C++ XGBoost 代码库中。 这允许快速精确计算 SHAP 值,无需采样,也无需提供背景数据集(因为背景是从树木的覆盖范围推断出来的)。

在这里,我们演示如何使用 SHAP 值来理解 XGBoost 模型预测。

import matplotlib.pylab as pl
import numpy as np
import xgboost
from sklearn.model_selection import train_test_splitimport shap# print the JS visualization code to the notebook
shap.initjs()

1.加载数据集

X, y = shap.datasets.adult()
X_display, y_display = shap.datasets.adult(display=True)# create a train/test split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=7)
d_train = xgboost.DMatrix(X_train, label=y_train)
d_test = xgboost.DMatrix(X_test, label=y_test)

2.训练模型

params = {"eta": 0.01,"objective": "binary:logistic","subsample": 0.5,"base_score": np.mean(y_train),"eval_metric": "logloss",
}
model = xgboost.train(params,d_train,5000,evals=[(d_test, "test")],verbose_eval=100,early_stopping_rounds=20,
)
[0]	test-logloss:0.54663
[100]	test-logloss:0.36373
[200]	test-logloss:0.31793
[300]	test-logloss:0.30061
[400]	test-logloss:0.29207
[500]	test-logloss:0.28678
[600]	test-logloss:0.28381
[700]	test-logloss:0.28181
[800]	test-logloss:0.28064
[900]	test-logloss:0.27992
[1000]	test-logloss:0.27928
[1019]	test-logloss:0.27935

3.经典特征归因

在这里,我们尝试 XGBoost 附带的全局特征重要性计算。 请注意,它们都是相互矛盾的,这激励了 SHAP 值的使用,因为它们具有一致性保证(意味着它们将正确排序特征)。

xgboost.plot_importance(model)
pl.title("xgboost.plot_importance(model)")
pl.show()


在这里插入图片描述

xgboost.plot_importance(model, importance_type="cover")
pl.title('xgboost.plot_importance(model, importance_type="cover")')
pl.show()


在这里插入图片描述

xgboost.plot_importance(model, importance_type="gain")
pl.title('xgboost.plot_importance(model, importance_type="gain")')
pl.show()


在这里插入图片描述

4,解释预测

在这里,我们使用集成到 XGBoost 中的 Tree SHAP 实现来解释整个数据集(32561 个样本)。

# this takes a minute or two since we are explaining over 30 thousand samples in a model with over a thousand trees
explainer = shap.TreeExplainer(model)
shap_values = explainer.shap_values(X)

4.1 可视化单个预测

请注意,我们使用“显示值”数据框,因此我们得到了漂亮的字符串而不是类别代码。

shap.force_plot(explainer.expected_value, shap_values[0, :], X_display.iloc[0, :])

在这里插入图片描述

4.2 将许多预测可视化

为了让浏览器满意,我们只可视化 1,000 个人。

shap.force_plot(explainer.expected_value, shap_values[:1000, :], X_display.iloc[:1000, :]
)

在这里插入图片描述

5.平均重要性条形图

这取整个数据集中 SHAP 值大小的平均值,并将其绘制为简单的条形图。

shap.summary_plot(shap_values, X_display, plot_type="bar")


在这里插入图片描述

6.SHAP 概要图

我们没有使用典型的特征重要性条形图,而是使用每个特征的 SHAP 值的密度散点图来确定每个特征对验证数据集中个体的模型输出有多大影响。 特征按所有样本的 SHAP 值大小之和排序。 有趣的是,关系特征比资本收益特征具有更大的总体模型影响,但对于那些资本收益重要的样本,它比年龄具有更大的影响。 换句话说,资本收益对少数预测的影响较大,而年龄对所有预测的影响较小。

请注意,当散点不适合在线时,它们会堆积起来以显示密度,每个点的颜色代表该个体的特征值。

shap.summary_plot(shap_values, X)


在这里插入图片描述

7.SHAP 相关图

SHAP 依赖图显示单个特征对整个数据集的影响。 他们绘制了多个样本中某个特征的值与该特征的 SHA 值的关系图。 SHAP 依赖图与部分依赖图类似,但考虑了特征中存在的交互效应,并且仅在数据支持的输入空间区域中定义。 单个特征值处的 SHAP 值的垂直分散是由交互效应驱动的,并且选择另一个特征进行着色以突出可能的交互。

for name in X_train.columns:shap.dependence_plot(name, shap_values, X, display_features=X_display)


在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述
)

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

8.简单的监督聚类

按 shap_values 对人们进行聚类会导致与手头的预测任务相关的组(在本例中是他们的收入潜力)。

from sklearn.decomposition import PCA
from sklearn.manifold import TSNEshap_pca50 = PCA(n_components=12).fit_transform(shap_values[:1000, :])
shap_embedded = TSNE(n_components=2, perplexity=50).fit_transform(shap_values[:1000, :])
from matplotlib.colors import LinearSegmentedColormapcdict1 = {"red": ((0.0, 0.11764705882352941, 0.11764705882352941),(1.0, 0.9607843137254902, 0.9607843137254902),),"green": ((0.0, 0.5333333333333333, 0.5333333333333333),(1.0, 0.15294117647058825, 0.15294117647058825),),"blue": ((0.0, 0.8980392156862745, 0.8980392156862745),(1.0, 0.3411764705882353, 0.3411764705882353),),"alpha": ((0.0, 1, 1), (0.5, 1, 1), (1.0, 1, 1)),
}  # #1E88E5 -> #ff0052
red_blue_solid = LinearSegmentedColormap("RedBlue", cdict1)
f = pl.figure(figsize=(5, 5))
pl.scatter(shap_embedded[:, 0],shap_embedded[:, 1],c=shap_values[:1000, :].sum(1).astype(np.float64),linewidth=0,alpha=1.0,cmap=red_blue_solid,
)
cb = pl.colorbar(label="Log odds of making > $50K", aspect=40, orientation="horizontal")
cb.set_alpha(1)
cb.outline.set_linewidth(0)
cb.ax.tick_params("x", length=0)
cb.ax.xaxis.set_label_position("top")
pl.gca().axis("off")
pl.show()


在这里插入图片描述

for feature in ["Relationship", "Capital Gain", "Capital Loss"]:f = pl.figure(figsize=(5, 5))pl.scatter(shap_embedded[:, 0],shap_embedded[:, 1],c=X[feature].values[:1000].astype(np.float64),linewidth=0,alpha=1.0,cmap=red_blue_solid,)cb = pl.colorbar(label=feature, aspect=40, orientation="horizontal")cb.set_alpha(1)cb.outline.set_linewidth(0)cb.ax.tick_params("x", length=0)cb.ax.xaxis.set_label_position("top")pl.gca().axis("off")pl.show()


在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

训练每棵树只有两个叶子的模型,因此特征之间没有交互项

强制模型没有交互项意味着某个特征对结果的影响不依赖于任何其他特征的值。 这反映在下面的 SHAP 相关图中,因为没有垂直扩展。 垂直分布反映了一个特征的单个值可能对模型输出产生不同的影响,具体取决于个体呈现的其他特征的上下文。 然而,对于没有交互项的模型,无论个体可能具有哪些其他属性,特征总是具有相同的影响。

与传统的部分相关图相比,SHAP 相关图的优点之一是能够区分具有交互项和不具有交互项的模型。 换句话说,SHAP 相关图通过给定特征值处散点图的垂直方差给出了交互项大小的概念。

# train final model on the full data set
params = {"eta": 0.05,"max_depth": 1,"objective": "binary:logistic","subsample": 0.5,"base_score": np.mean(y_train),"eval_metric": "logloss",
}
model_ind = xgboost.train(params,d_train,5000,evals=[(d_test, "test")],verbose_eval=100,early_stopping_rounds=20,
)
[0]	test-logloss:0.54113
[100]	test-logloss:0.35499
[200]	test-logloss:0.32848
[300]	test-logloss:0.31901
[400]	test-logloss:0.31331
[500]	test-logloss:0.30930
[600]	test-logloss:0.30619
[700]	test-logloss:0.30371
[800]	test-logloss:0.30184
[900]	test-logloss:0.30035
[1000]	test-logloss:0.29913
[1100]	test-logloss:0.29796
[1200]	test-logloss:0.29695
[1300]	test-logloss:0.29606
[1400]	test-logloss:0.29525
[1500]	test-logloss:0.29471
[1565]	test-logloss:0.29439
shap_values_ind = shap.TreeExplainer(model_ind).shap_values(X)

请注意,下面的交互颜色条对于该模型来说没有意义,因为它没有交互。

for name in X_train.columns:shap.dependence_plot(name, shap_values_ind, X, display_features=X_display)
invalid value encountered in divide
invalid value encountered in divide

在这里插入图片描述

invalid value encountered in divide
invalid value encountered in divide

在这里插入图片描述

invalid value encountered in divide
invalid value encountered in divide

在这里插入图片描述

invalid value encountered in divide
invalid value encountered in divide

在这里插入图片描述

invalid value encountered in divide
invalid value encountered in divide

在这里插入图片描述

invalid value encountered in divide
invalid value encountered in divide

在这里插入图片描述

invalid value encountered in divide
invalid value encountered in divide

在这里插入图片描述

这篇关于SHAP(五):使用 XGBoost 进行人口普查收入分类的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/451224

相关文章

使用Python开发一个Ditto剪贴板数据导出工具

《使用Python开发一个Ditto剪贴板数据导出工具》在日常工作中,我们经常需要处理大量的剪贴板数据,下面将介绍如何使用Python的wxPython库开发一个图形化工具,实现从Ditto数据库中读... 目录前言运行结果项目需求分析技术选型核心功能实现1. Ditto数据库结构分析2. 数据库自动定位3

Python yield与yield from的简单使用方式

《Pythonyield与yieldfrom的简单使用方式》生成器通过yield定义,可在处理I/O时暂停执行并返回部分结果,待其他任务完成后继续,yieldfrom用于将一个生成器的值传递给另一... 目录python yield与yield from的使用代码结构总结Python yield与yield

Go语言使用select监听多个channel的示例详解

《Go语言使用select监听多个channel的示例详解》本文将聚焦Go并发中的一个强力工具,select,这篇文章将通过实际案例学习如何优雅地监听多个Channel,实现多任务处理、超时控制和非阻... 目录一、前言:为什么要使用select二、实战目标三、案例代码:监听两个任务结果和超时四、运行示例五

python使用Akshare与Streamlit实现股票估值分析教程(图文代码)

《python使用Akshare与Streamlit实现股票估值分析教程(图文代码)》入职测试中的一道题,要求:从Akshare下载某一个股票近十年的财务报表包括,资产负债表,利润表,现金流量表,保存... 目录一、前言二、核心知识点梳理1、Akshare数据获取2、Pandas数据处理3、Matplotl

Java使用Thumbnailator库实现图片处理与压缩功能

《Java使用Thumbnailator库实现图片处理与压缩功能》Thumbnailator是高性能Java图像处理库,支持缩放、旋转、水印添加、裁剪及格式转换,提供易用API和性能优化,适合Web应... 目录1. 图片处理库Thumbnailator介绍2. 基本和指定大小图片缩放功能2.1 图片缩放的

Python使用Tenacity一行代码实现自动重试详解

《Python使用Tenacity一行代码实现自动重试详解》tenacity是一个专为Python设计的通用重试库,它的核心理念就是用简单、清晰的方式,为任何可能失败的操作添加重试能力,下面我们就来看... 目录一切始于一个简单的 API 调用Tenacity 入门:一行代码实现优雅重试精细控制:让重试按我

MySQL中EXISTS与IN用法使用与对比分析

《MySQL中EXISTS与IN用法使用与对比分析》在MySQL中,EXISTS和IN都用于子查询中根据另一个查询的结果来过滤主查询的记录,本文将基于工作原理、效率和应用场景进行全面对比... 目录一、基本用法详解1. IN 运算符2. EXISTS 运算符二、EXISTS 与 IN 的选择策略三、性能对比

使用Python构建智能BAT文件生成器的完美解决方案

《使用Python构建智能BAT文件生成器的完美解决方案》这篇文章主要为大家详细介绍了如何使用wxPython构建一个智能的BAT文件生成器,它不仅能够为Python脚本生成启动脚本,还提供了完整的文... 目录引言运行效果图项目背景与需求分析核心需求技术选型核心功能实现1. 数据库设计2. 界面布局设计3

使用IDEA部署Docker应用指南分享

《使用IDEA部署Docker应用指南分享》本文介绍了使用IDEA部署Docker应用的四步流程:创建Dockerfile、配置IDEADocker连接、设置运行调试环境、构建运行镜像,并强调需准备本... 目录一、创建 dockerfile 配置文件二、配置 IDEA 的 Docker 连接三、配置 Do

Android Paging 分页加载库使用实践

《AndroidPaging分页加载库使用实践》AndroidPaging库是Jetpack组件的一部分,它提供了一套完整的解决方案来处理大型数据集的分页加载,本文将深入探讨Paging库... 目录前言一、Paging 库概述二、Paging 3 核心组件1. PagingSource2. Pager3.