GDP越高就越幸福吗?用Python分析《世界幸福指数报告》后我们发现…

2023-12-03 23:08

本文主要是介绍GDP越高就越幸福吗?用Python分析《世界幸福指数报告》后我们发现…,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

【导读】

今天教大家用Python分析《世界幸福指数报告》。公众号后台,回复关键字“0922”获取完整数据。

《世界幸福指数报告》是对全球幸福状况的一次具有里程碑意义的调查。

民意测验机构盖洛普从2012年起,每年都会在联合国计划下发布《世界幸福指数报告》,报告会综合两年内150多个国家的国民对其所处社会、城市和自然环境等因素进行评价后,再根据他们所感知的幸福程度对国家进行排名。

《世界幸福指数报告》的编撰主要依赖于对150多个国家的1000多人提出一个简单的主观性问题:“如果有一个从0分到10分的阶梯,顶层的10分代表你可能得到的最佳生活,底层的0分代表你可能得到的最差生活。你觉得你现在在哪一层?”

那么哪个国家在总体幸福指数上排名最高?

哪些因素对幸福指数的影响最大?

今天我们就带你用Python来聊一聊。

01数据理解

关键字段含义解释:

  1. rank:幸福指数排名
  2. region:国家
  3. happiness:幸福指数得分
  4. gdp_per_capita:GDP(人均国内生产总值)
  5. healthy_life_expectancy:健康预期寿命
  6. freedom_to_life_choise:自由权
  7. generosity:慷慨程度
  8. year:年份
  9. corruption_perceptions:清廉指数
  10. social_support:社会支持(客观上物质上的援助和直接服务;主观上指个体感到在社会中被尊重、被支持和被理解的情绪体验和满意程度。)

02数据导入和数据整理

首先导入所需包。

数据整理

import numpy as np
import pandas as pd

可视化

import matplotlib.pyplot as plt
import seaborn as sns
import plotly as py
import plotly.graph_objs as go
import plotly.express as px
from plotly.offline import init_notebook_mode, iplot, plot

init_notebook_mode(connected=True)
plt.style.use(‘seaborn’)

读入数据

df_2015 = pd.read_csv(’./deal_data/2015.csv’)
df_2016 = pd.read_csv(’./deal_data/2016.csv’)
df_2017 = pd.read_csv(’./deal_data/2017.csv’)
df_2018 = pd.read_csv(’./deal_data/2018.csv’)
df_2019 = pd.read_csv(’./deal_data/2019.csv’)

新增列-年份

df_2015[“year”] = str(2015)
df_2016[“year”] = str(2016)
df_2017[“year”] = str(2017)
df_2018[“year”] = str(2018)
df_2019[“year”] = str(2019)

合并数据

df_all = df_2015.append([df_2016, df_2017, df_2018, df_2019], sort=False)
df_all.drop(‘Unnamed: 0’, axis=1, inplace=True)
df_all.head()

print(df_2015.shape, df_2016.shape, df_2017.shape, df_2018.shape, df_2019.shape)
(158, 10) (157, 10) (155, 10) (156, 11) (156, 11)
df_all.info()
<class ‘pandas.core.frame.DataFrame’>
Int64Index: 782 entries, 0 to 155
Data columns (total 10 columns):
region 782 non-null object
rank 782 non-null int64
happiness 782 non-null float64
gdp_per_capita 782 non-null float64
healthy_life_expectancy 782 non-null float64
freedom_to_life_choise 782 non-null float64
corruption_perceptions 781 non-null float64
generosity 782 non-null float64
year 782 non-null object
social_support 312 non-null float64
dtypes: float64(7), int64(1), object(2)
memory usage: 67.2+ KB
03数据可视化

2019世界幸福地图

整体来看,北欧的国家幸福指数较高,如冰岛、丹麦、挪威、芬兰;东非和西非的国家幸福指数较低,如多哥、布隆迪、卢旺达和坦桑尼亚。

代码展示:

data = dict(type = ‘choropleth’,
locations = df_2019[‘region’],
locationmode = ‘country names’,
colorscale = ‘RdYlGn’,
z = df_2019[‘happiness’],
text = df_2019[‘region’],
colorbar = {‘title’:‘Happiness’})

layout = dict(title = ‘Geographical Visualization of Happiness Score in 2019’,
geo = dict(showframe = True, projection = {‘type’: ‘azimuthal equal area’}))

choromap3 = go.Figure(data = [data], layout=layout)
plot(choromap3, filename=’./html/世界幸福地图.html’)
2019世界幸福国家排行Top10

2019年报告,芬兰连续两年被评为“全球最幸福国家”。丹麦、挪威、冰岛、荷兰进入前五名,对比2018年报告,中国从86名下降到93名。

代码展示:

合并数据

rank_top10 = df_2019.head(10)[[‘rank’, ‘region’, ‘happiness’]]
last_top10 = df_2019.tail(10)[[‘rank’, ‘region’, ‘happiness’]]
rank_concat = pd.concat([rank_top10, last_top10])

条形图

fig = px.bar(rank_concat,
x=“region”,
y=“happiness”,
color=“region”,
title=“World’s happiest and least happy countries in 2019”)

plot(fig, filename=’./html/2019世界幸福国家排行Top10和Last10.html’)
幸福指数相关性

我们可以得出以下结论:

从影响因素相关性热力图可以看出,在影响幸福得分的因素中,GDP、社会支持、健康预期寿命呈现高度相关,自由权呈现中度相关,国家的廉政水平呈现低度相关,慷慨程度则呈现极低的相关性;

GDP与健康预期寿命、社会支持之间存在高度相关。说明GDP高的国家,医疗水平和社会福利较为完善,人民的预期寿命也会越高;

健康预期寿命与社会支持之间存在中度相关性。

以下分别观察各个因素的影响程度。

GDP和幸福得分

人均GDP与幸福得分呈高度线性正相关关系,GDP越高的国家,幸福水平相对越高。

代码展示:

散点图

fig = px.scatter(df_all, x=‘gdp_per_capita’,
y=‘happiness’,
facet_row=‘year’,
color=‘year’,
trendline=‘ols’
)
fig.update_layout(height=800, title_text=‘GDP per capita and Happiness Score’)
plot(fig, filename=’./html/GDP和幸福得分.html’)
健康预期寿命和幸福得分

健康预期寿命与幸福得分呈高度线性正相关关系,健康预期寿命越高的国家,幸福水平相对越高。

代码展示:

散点图
fig = px.scatter(df_all, x=‘healthy_life_expectancy’,
y=‘happiness’,
facet_row=‘year’,
color=‘year’,
trendline=‘ols’
)
fig.update_layout(height=800, title_text=‘Healthy Life Expecancy and Happiness Score’)
plot(fig, filename=’./html/健康预期寿命和幸福得分.html’)
代码展示:

fig = px.scatter(df_all,
x=‘gdp_per_capita’,
y=‘happiness’,
animation_frame=‘year’,
animation_group=‘region’,
size=‘rank’,
color=‘region’,
hover_name=‘region’,
trendline=‘ols’
)
fig.update_layout(title_text=‘Happiness Rank vs GDP per Capita’)
plot(fig, filename=’./html/GDP和幸福水平动态图展示.html’)
代码展示:

fig = px.scatter(df_all,
x=‘healthy_life_expectancy’,
y=‘happiness’,
animation_frame=‘year’,
animation_group=‘region’,
size=‘rank’,
color=‘region’,
hover_name=‘region’,
trendline=‘ols’
)
fig.update_layout(title_text=‘Happiness Rank vs healthy_life_expectancy’)
plot(fig, filename=’./html/健康预期寿命和幸福水平动态图展示.html’)
04数据建模

我们使用线性回归进行建立一个基准模型,首先筛选一下建模变量,并删除空值记录。

sel_cols = [‘happiness’, ‘gdp_per_capita’, ‘healthy_life_expectancy’,
‘freedom_to_life_choise’, ‘corruption_perceptions’, ‘generosity’]

重置索引

df_model.index = range(df_model.shape[0])
df_model = df_all[sel_cols]

删除空值

df_model = df_model.dropna()
df_model.head()

from statsmodels.formula.api import ols

建立多元线性回归模型

lm_m = ols(formula=‘happiness ~ gdp_per_capita + healthy_life_expectancy + freedom_to_life_choise + corruption_perceptions + generosity’,
data=df_model).fit()
lm_m.summary()

模型的R-squared=0.744,拟合效果尚可,根据模型的参数可知:

变量重要性排序为:gdp_per_capita、freedom_to_life_choise、healthy_life_expectancy、corruption_perceptions、generosity
控制其他变量不变的情况下,GDP指数每增加一个单位,幸福指数增加1.32个单位,健康预期寿命指数每增加一个单位,幸福指数增加1.21个单位。

比较预测值和真实值的分布:

df_pred = pd.concat([df_model[‘happiness’], y_pred], axis=1)
df_pred.columns = [‘y_true’, ‘y_pred’]

散点图

fig = px.scatter(df_pred, x=‘y_true’, y=‘y_pred’, trendline=‘ols’)
fig.update_layout(title=‘Resid of OLS Regression’)
plot(fig, filename=’./html/预测值和真实值分布图.html’)
以下为模型残差分布图。

fig = px.histogram(x=lm_m.resid)
fig.update_layout(title=‘Resid of OLS Regression’)
plot(fig, filename=’./html/多元线性回归残差分布图.html’)
代码下载:https://edu.cda.cn/group/19/thread/279

这篇关于GDP越高就越幸福吗?用Python分析《世界幸福指数报告》后我们发现…的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/451205

相关文章

python常见环境管理工具超全解析

《python常见环境管理工具超全解析》在Python开发中,管理多个项目及其依赖项通常是一个挑战,下面:本文主要介绍python常见环境管理工具的相关资料,文中通过代码介绍的非常详细,需要的朋友... 目录1. conda2. pip3. uvuv 工具自动创建和管理环境的特点4. setup.py5.

Python常用命令提示符使用方法详解

《Python常用命令提示符使用方法详解》在学习python的过程中,我们需要用到命令提示符(CMD)进行环境的配置,:本文主要介绍Python常用命令提示符使用方法的相关资料,文中通过代码介绍的... 目录一、python环境基础命令【Windows】1、检查Python是否安装2、 查看Python的安

Python UV安装、升级、卸载详细步骤记录

《PythonUV安装、升级、卸载详细步骤记录》:本文主要介绍PythonUV安装、升级、卸载的详细步骤,uv是Astral推出的下一代Python包与项目管理器,主打单一可执行文件、极致性能... 目录安装检查升级设置自动补全卸载UV 命令总结 官方文档详见:https://docs.astral.sh/

Python并行处理实战之如何使用ProcessPoolExecutor加速计算

《Python并行处理实战之如何使用ProcessPoolExecutor加速计算》Python提供了多种并行处理的方式,其中concurrent.futures模块的ProcessPoolExecu... 目录简介完整代码示例代码解释1. 导入必要的模块2. 定义处理函数3. 主函数4. 生成数字列表5.

Python中help()和dir()函数的使用

《Python中help()和dir()函数的使用》我们经常需要查看某个对象(如模块、类、函数等)的属性和方法,Python提供了两个内置函数help()和dir(),它们可以帮助我们快速了解代... 目录1. 引言2. help() 函数2.1 作用2.2 使用方法2.3 示例(1) 查看内置函数的帮助(

Python虚拟环境与Conda使用指南分享

《Python虚拟环境与Conda使用指南分享》:本文主要介绍Python虚拟环境与Conda使用指南,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、python 虚拟环境概述1.1 什么是虚拟环境1.2 为什么需要虚拟环境二、Python 内置的虚拟环境工具

Python实例题之pygame开发打飞机游戏实例代码

《Python实例题之pygame开发打飞机游戏实例代码》对于python的学习者,能够写出一个飞机大战的程序代码,是不是感觉到非常的开心,:本文主要介绍Python实例题之pygame开发打飞机... 目录题目pygame-aircraft-game使用 Pygame 开发的打飞机游戏脚本代码解释初始化部

Python pip下载包及所有依赖到指定文件夹的步骤说明

《Pythonpip下载包及所有依赖到指定文件夹的步骤说明》为了方便开发和部署,我们常常需要将Python项目所依赖的第三方包导出到本地文件夹中,:本文主要介绍Pythonpip下载包及所有依... 目录步骤说明命令格式示例参数说明离线安装方法注意事项总结要使用pip下载包及其所有依赖到指定文件夹,请按照以

Python实现精准提取 PDF中的文本,表格与图片

《Python实现精准提取PDF中的文本,表格与图片》在实际的系统开发中,处理PDF文件不仅限于读取整页文本,还有提取文档中的表格数据,图片或特定区域的内容,下面我们来看看如何使用Python实... 目录安装 python 库提取 PDF 文本内容:获取整页文本与指定区域内容获取页面上的所有文本内容获取

基于Python实现一个Windows Tree命令工具

《基于Python实现一个WindowsTree命令工具》今天想要在Windows平台的CMD命令终端窗口中使用像Linux下的tree命令,打印一下目录结构层级树,然而还真有tree命令,但是发现... 目录引言实现代码使用说明可用选项示例用法功能特点添加到环境变量方法一:创建批处理文件并添加到PATH1