Windows利用MMDeploy部署OpenMMLab 模型并使用Python进行部署

2023-12-03 20:04

本文主要是介绍Windows利用MMDeploy部署OpenMMLab 模型并使用Python进行部署,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

前言

一、准备工作

二、安装 MMDeploy

总结


前言

近期在用OpenMMLab构建模型,然后需要使用MMDeploy对模型进行部署。虽然官方文档提供了详细的说明,但是写的太繁琐了,而且在实际部署过程中,发现并不是所有步骤和内容都需要,因此,自己通过测试,记录一下如何利用MMDeploy部署OpenMMLab 模型。


一、准备工作

在利用MMDeploy部署模型之前,需要安装好CUDA、CUDNN。对于端到端的模型转换和推理,MMDeploy 依赖 Python 3.6+ 以及 PyTorch 1.8+。

第一步:从官网下载并安装 Miniconda

第二步:创建并激活 conda 环境

conda create --name mmdeploy python=3.8 -y
conda activate mmdeploy

第三步: 参考官方文档并安装 PyTorch。本文主要是在GPU下测试,因此,安装脚本为:

pip install torch==2.1.0 torchvision==0.16.0 torchaudio==2.1.0 --index-url https://download.pytorch.org/whl/cu118

二、安装 MMDeploy

第一步:通过 MIM 安装 MMCV

pip install -U openmim
mim install "mmcv>=2.0.0rc2"

第二步: 安装 MMDeploy 和 推理引擎

主要执行以下命令:

# 1. 安装 MMDeploy 模型转换工具(含trt/ort自定义算子)
pip install mmdeploy==1.3.0
# 2. 支持 onnxruntime-gpu tensorrt 推理
pip install mmdeploy-runtime-gpu==1.3.0
# 3. onnxruntime-gpu
pip install onnxruntime-gpu==1.8.1

第三步: 准备mmdeploy和mmpretrain

1.克隆mmdeploy仓库

git clone -b main https://github.com/open-mmlab/mmdeploy.git

这里主要为了使用configs文件,所以没有加--recursive来下载submodule,也不需要编译mmdeploy

2.安装mmpretrain

git clone -b main https://github.com/open-mmlab/mmpretrain.git
cd mmpretrain
pip install -e .

3.准备一个PyTorch的模型文件当作我们的示例

这里选择了resnet18_8xb32_in1k_20210831-fbbb1da6.pth,对应的训练config为resnet18_8xb32_in1k.py

此时,文件夹目录为:

4.在构建python 转换代码时,官方给出的代码会出现无法找到deploy_cfg文件的问题,所以我这里使用了绝对目录,只需要将absolute_path修改为自己得文件路径即可。

from mmdeploy.apis import torch2onnx
from mmdeploy.backend.sdk.export_info import export2SDKabsolute_path = "自己电脑上的路径"img = absolute_path + "mmpretrain/demo/demo.JPEG"
work_dir = absolute_path + "work_dir/onnx/resnet"
save_file = absolute_path + "end2end.onnx"
deploy_cfg = absolute_path + "mmdeploy/configs/mmpretrain/classification_onnxruntime_dynamic.py"
model_cfg = absolute_path + "mmpretrain/configs/resnet/resnet18_8xb32_in1k.py"
model_checkpoint = absolute_path + "resnet18_8xb32_in1k_20210831-fbbb1da6.pth"
device = "cpu"# 1. Convert model to ONNX
torch2onnx(img, work_dir=work_dir, save_file=save_file,deploy_cfg=deploy_cfg, model_cfg=model_cfg,device=device, model_checkpoint=model_checkpoint)# 2. Extract pipeline info for sdk use (dump-info)
export2SDK(deploy_cfg=deploy_cfg, model_cfg=model_cfg, work_dir=work_dir, device=device, pth=model_checkpoint)

5.推理代码如下。

# Copyright (c) OpenMMLab. All rights reserved.
import argparseimport cv2
from mmdeploy_runtime import Classifierabsolute_path = "自己电脑上的路径"
model_path = absolute_path + 'work_dir/onnx/resnet/'
img_path = absolute_path + "mmpretrain/demo/bird.JPEG"def parse_args():parser = argparse.ArgumentParser(description='show how to use sdk python api')parser.add_argument('--device_name', default="cpu", help='name of device, cuda or cpu')parser.add_argument('--model_path', default=model_path, help='path of mmdeploy SDK model dumped by model converter')parser.add_argument('--image_path', default=img_path, help='path of an image')args = parser.parse_args()return argsdef main():args = parse_args()img = cv2.imread(args.image_path)classifier = Classifier(model_path=args.model_path, device_name=args.device_name, device_id=0)result = classifier(img)for label_id, score in result:print(label_id, score)if __name__ == '__main__':main()

总结

通过对官方文档的测试,发现也不是所有的内容都需要的。尤其是当仅仅使用python进行推理的情况下,是不需要下载mmdeploy-1.3.0-windows-amd64.zipmmdeploy-1.3.0-windows-amd64-cuda11.8.zip的。

这篇关于Windows利用MMDeploy部署OpenMMLab 模型并使用Python进行部署的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/450705

相关文章

Android Paging 分页加载库使用实践

《AndroidPaging分页加载库使用实践》AndroidPaging库是Jetpack组件的一部分,它提供了一套完整的解决方案来处理大型数据集的分页加载,本文将深入探讨Paging库... 目录前言一、Paging 库概述二、Paging 3 核心组件1. PagingSource2. Pager3.

Python进行JSON和Excel文件转换处理指南

《Python进行JSON和Excel文件转换处理指南》在数据交换与系统集成中,JSON与Excel是两种极为常见的数据格式,本文将介绍如何使用Python实现将JSON转换为格式化的Excel文件,... 目录将 jsON 导入为格式化 Excel将 Excel 导出为结构化 JSON处理嵌套 JSON:

Python操作PDF文档的主流库使用指南

《Python操作PDF文档的主流库使用指南》PDF因其跨平台、格式固定的特性成为文档交换的标准,然而,由于其复杂的内部结构,程序化操作PDF一直是个挑战,本文主要为大家整理了Python操作PD... 目录一、 基础操作1.PyPDF2 (及其继任者 pypdf)2.PyMuPDF / fitz3.Fre

python设置环境变量路径实现过程

《python设置环境变量路径实现过程》本文介绍设置Python路径的多种方法:临时设置(Windows用`set`,Linux/macOS用`export`)、永久设置(系统属性或shell配置文件... 目录设置python路径的方法临时设置环境变量(适用于当前会话)永久设置环境变量(Windows系统

python中列表应用和扩展性实用详解

《python中列表应用和扩展性实用详解》文章介绍了Python列表的核心特性:有序数据集合,用[]定义,元素类型可不同,支持迭代、循环、切片,可执行增删改查、排序、推导式及嵌套操作,是常用的数据处理... 目录1、列表定义2、格式3、列表是可迭代对象4、列表的常见操作总结1、列表定义是处理一组有序项目的

python运用requests模拟浏览器发送请求过程

《python运用requests模拟浏览器发送请求过程》模拟浏览器请求可选用requests处理静态内容,selenium应对动态页面,playwright支持高级自动化,设置代理和超时参数,根据需... 目录使用requests库模拟浏览器请求使用selenium自动化浏览器操作使用playwright

python使用try函数详解

《python使用try函数详解》Pythontry语句用于异常处理,支持捕获特定/多种异常、else/final子句确保资源释放,结合with语句自动清理,可自定义异常及嵌套结构,灵活应对错误场景... 目录try 函数的基本语法捕获特定异常捕获多个异常使用 else 子句使用 finally 子句捕获所

Python极速搭建局域网文件共享服务器完整指南

《Python极速搭建局域网文件共享服务器完整指南》在办公室或家庭局域网中快速共享文件时,许多人会选择第三方工具或云存储服务,但这些方案往往存在隐私泄露风险或需要复杂配置,下面我们就来看看如何使用Py... 目录一、android基础版:HTTP文件共享的魔法命令1. 一行代码启动HTTP服务器2. 关键参

C++11右值引用与Lambda表达式的使用

《C++11右值引用与Lambda表达式的使用》C++11引入右值引用,实现移动语义提升性能,支持资源转移与完美转发;同时引入Lambda表达式,简化匿名函数定义,通过捕获列表和参数列表灵活处理变量... 目录C++11新特性右值引用和移动语义左值 / 右值常见的左值和右值移动语义移动构造函数移动复制运算符

Python对接支付宝支付之使用AliPay实现的详细操作指南

《Python对接支付宝支付之使用AliPay实现的详细操作指南》支付宝没有提供PythonSDK,但是强大的github就有提供python-alipay-sdk,封装里很多复杂操作,使用这个我们就... 目录一、引言二、准备工作2.1 支付宝开放平台入驻与应用创建2.2 密钥生成与配置2.3 安装ali