【算法每日一练]-图论(保姆级教程篇12 tarjan篇)#POJ3352道路建设 #POJ2553图的底部 #POJ1236校园网络 #缩点

本文主要是介绍【算法每日一练]-图论(保姆级教程篇12 tarjan篇)#POJ3352道路建设 #POJ2553图的底部 #POJ1236校园网络 #缩点,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

        

POJ3352:道路建设

        思路:

POJ2553:图的底部

       思路:

POJ1236校园网络

       思路:

缩点: 

      思路:


        

        

POJ3352:道路建设

        
由于道路要维修,维修时候来回都不能走,现要在各个景点间建设新道路以便维修时候也能保证任何两个景点之间可以相互到达,求最少的新道路数量
任何一对景点间最多只能在它们之间有一条道路(没有重边)。道路一开始是联通的

输入:
3 3
1 2
2 3
1 3

10 12
1 2
1 3
1 4
2 5
2 6
5 6
3 7
3 8
7 8
4 9
4 10
9 10

        
思路:

先求解边双连通分量,然后缩点,然后通过加边再把新图变成双连通图。

加边原理是这样的:
先统计叶节点个数为k,(k+1)/2就是要建的边数。因为在树中,给叶节点加边一定会产生环

说一下tarjan后的操作 

for(int u=1;u<=n;u++)for(int i=head[u];i;i=e[i].next){int v=e[i].to;if(low[u]!=low[v]) deg[low[u]]++;//遍历新图的边(其实就是旧图的桥)
//有重边也要记录。low[u]就是连通分量号,每个连通分量中只有桥的点才有度}int leaf=0;
//		for(int i=1;i<=n;i++){
//			cout<<i<<' '<<deg[i]<<' '<<low[i]<<'\n';//看详情
//		}for(int i=1;i<=n;i++){//检查每个连通分量号的度(一定不为零)if(deg[i]==1) leaf++;//度是1就是叶子}cout<<(leaf+1)/2<<'\n';

 首先是缩点:low是连通分量号,把度(无向图没有入度出度之分)统计到桥点身上(很像并查集中的缩点到祖宗点身上),注意我们这种缩点的过程肯定会遇到重边。此题中的重边是不能去掉的,否则叶节点会统计错误!!!

然后统计度为1就是叶子就行。

        

对于重边:有时候必须要,有时候不影响,有时候也必须去重。要仔细分析!

#include <bits/stdc++.h>//无向图的桥
using namespace std;
const int maxn=1000+5;
int n,m;
int head[maxn],cnt;
struct node{int to,next;}e[maxn*2];
int low[maxn],dfn[maxn],deg[maxn],num;//deg是度(无向图没有入度和出度之分)void add(int u,int v){ e[++cnt]=(node){v,head[u]};head[u]=cnt;}void tarjan(int u,int fa){dfn[u]=low[u]=++num;//初始化for(int i=head[u];i;i=e[i].next){int v=e[i].to;if(v==fa) continue;//不可以走父子边回去if(!dfn[v]){//没访问过就递归访问tarjan(v,u);low[u]=min(low[u],low[v]);//low是自己或子孙能走回的最小dfn}else{//可以从非父子边回去就要获取dfn值,就是该点能回到的最小dfnlow[u]=min(low[u],dfn[v]);}}
}void init(){memset(head,0,sizeof(head));memset(low,0,sizeof(low));memset(dfn,0,sizeof(dfn));memset(deg,0,sizeof(deg));cnt=num=0;
}int main(){while(cin>>n>>m){init();int u,v;while(m--){cin>>u>>v;add(u,v);add(v,u);}tarjan(1,0);//求边双连通分量for(int u=1;u<=n;u++)for(int i=head[u];i;i=e[i].next){int v=e[i].to;//遍历新图的边(其实就是旧图的桥)if(low[u]!=low[v]) deg[low[u]]++;
//有重边也要记录。low[u]就是连通分量号,每个连通分量中只有桥的点才有度}int leaf=0;
//		for(int i=1;i<=n;i++){
//			cout<<i<<' '<<deg[i]<<' '<<low[i]<<'\n';//看详情
//		}for(int i=1;i<=n;i++){//检查每个连通分量号的度(一定不为零)if(deg[i]==1) leaf++;//度是1就是叶子}cout<<(leaf+1)/2<<'\n';}	
}

        

        

POJ2553:图的底部

        
有向图中若v可以到的任何一个u,u也可以到v,则v是一个sink点,图的底部是由所有sink点构成的,按顺序输出所有sink点编号,没有sink就输出一个空行

输::
3 3
1 3 2 3 3 1
2 1
1 2
0

思路:

你只需要输出出度为0的连通分量中的所有点编号即可
                

for(int u=1;u<=n;u++)for(int i=head[u];i;i=e[i].next){//对所有边进行判断是不是连接着两个分量int v=e[i].to;if(be[u]!=be[v]){//有重边out[be[u]]++;//缩点}}
int f=1;
for(int i=1;i<=n;i++){if(!out[be[i]]){//输出出度为0的连通分量中的点if(f) f=0;else cout<<" ";//一个数前面有个空格cout<<i; }
}

不同于无向图,有向图的连通分量号我们用一个be数组存起来 

然后对所有边进行判断是不是连接着两个分量,然后对新树中的边统计出度,输出出度为0的连通分量中的点

#include <bits/stdc++.h>
using namespace std;
const int maxn=5050;
bool ins[maxn];//标记是否在栈中
int n,m;
int head[maxn],be[maxn],out[maxn];//be是属于哪个连通分量,out是缩点的出度
int low[maxn],dfn[maxn],num,id,cnt;
stack <int> s;
struct node{int to,next;}e[maxn*2];void add(int u,int v){ e[++cnt]=(node){v,head[u]};head[u]=cnt;}void tarjan(int u){dfn[u]=low[u]=++num;//dfn访问序号,low是能走回到的最早的dfnins[u]=1;s.push(u);//第一次访问节点时候入栈for(int i=head[u];i;i=e[i].next){int v=e[i].to;if(!dfn[v]){//没访问过就递归访问tarjan(v);low[u]=min(low[u],low[v]);//获取孩子的最小的low值   }else if(ins[v]){//已经访问过且在栈中获取dfn号low[u]=min(low[u],dfn[v]);}}if(low[u]==dfn[u]){//low[u]==dfn[u]时,则从栈中不断弹出节点,直到x出栈停止。弹出的节点就是同一个连通分量的int v;do{//一定要先执行再判断v=s.top();s.pop();be[v]=id;//把这些弹出的点标记同一个id号(连通分量号)ins[v]=0;}while(v!=u);//直到是自己为止id++;}
}void init(){memset(head,0,sizeof(head));memset(low,0,sizeof(low));memset(ins,0,sizeof(ins));memset(dfn,0,sizeof(dfn));memset(out,0,sizeof(out));memset(be,0,sizeof(be));cnt=num=0;id=1;
}int main(){while((cin>>n)&&n){//点数cin>>m;//边数init();int u,v;while(m--){cin>>u>>v;add(u,v);}for(int i=1;i<=n;i++){if(!dfn[i]) tarjan(i);//有向图}for(int u=1;u<=n;u++)for(int i=head[u];i;i=e[i].next){int v=e[i].to;if(be[u]!=be[v]){//有重边out[be[u]]++;//缩点}}int f=1;for(int i=1;i<=n;i++){if(!out[be[i]]){//输出出度为0的连通分量中的点if(f) f=0;else cout<<" ";//(输出格式罢了,不用在乎这里)cout<<i; }}}	
}

        

        

POJ1236校园网络

        
每所学校都有一份发学校名单。计算至少先发给多少个学校才能使软件传到所有学校(任务1),计算至少增加多少扩展才能将软件发给任意学校结果都能传到所有学校(扩展就是将新成员引入一所学校的接收者名单)
5
2 4 3 0
4 5 0
0
0
1 0

        

思路:

        
任务1:每一个入度为0的连通分量都必须收到一个软件,计算个数。
任务2:每个连通分量必须既有入度也有出度,即入度为0的连通分量必须扩展一下,出度为0的连通分量必须也扩展一下(入度和出度对接,输出max就行)

#include <bits/stdc++.h>//有向图的强连通分量
using namespace std;
const int maxn=5050;
bool ins[maxn];
int n,m,cnt;
int head[maxn],be[maxn],in[maxn],out[maxn];//be是属于哪个连通分量  in,out是每个连通分量的入度和出度
int low[maxn],dfn[maxn],num,id;
stack <int> s;
struct node{int to,next;}e[maxn*2];void add(int u,int v){ e[++cnt]=(node){v,head[u]};head[u]=cnt;}void tarjan(int u){dfn[u]=low[u]=++num;//dfn访问序号,low是能走回到的最早的dfnins[u]=1;s.push(u);//第一次访问节点时候入栈for(int i=head[u];i;i=e[i].next){int v=e[i].to;if(!dfn[v]){//没访问过就递归访问tarjan(v);low[u]=min(low[u],low[v]);//获取孩子的最小的low值   }else if(ins[v]){//已经访问过且在栈中获取dfn号low[u]=min(low[u],dfn[v]);}}if(low[u]==dfn[u]){//low[u]==dfn[u]时,则从栈中不断弹出节点,直到x出栈停止。弹出的节点就是同一个连通分量的int v;id++;do{//一定要先执行再判断v=s.top();s.pop();be[v]=id;//把这些弹出的点标记同一个id号(连通分量号)ins[v]=0;}while(v!=u);//直到是自己为止}
}int main(){cin>>n;int v;//n为学校数量for(int i=1;i<=n;i++){while(cin>>v&&v)add(i,v);//表示接收i的v学校,以0结尾}for(int i=1;i<=n;i++){if(!dfn[i]) tarjan(i);}for(int u=1;u<=n;u++)for(int i=head[u];i;i=e[i].next){int v=e[i].to;if(be[u]!=be[v]){//有重边,可以输出一下in[be[v]]++;out[be[u]]++;//统计入度和出度,来缩点}}if(id==1){//一共只要一个连通分量的话要特判cout<<1<<'\n';cout<<0<<'\n';return 0;}int ans1=0,ans2=0;//for(int i=1;i<=n;i++)cout<<i<<' '<<be[i]<<'\n';for(int i=1;i<=id;i++){//	cout<<i<<" in"<<' '<<in[i]<<" , "<<"out"<<' '<<out[i]<<'\n';if(!in[i]) ans1++;if(!out[i]) ans2++;}cout<<ans1<<'\n';cout<<max(ans1,ans2)<<'\n';	
}

        

        

        

缩点: 

        

         

思路:

有向图中的强连通分量中的所有权值一定要全部加上,所以缩点建出新的DAG图,然后转化成了每个点走一次求最大点权值和
设置dp[v]表示到v点的最大权值和。 dp[v]=max(dp[u])即可,也就是要先求dp[u]再求dp[v],topo排序求一边就行了。完了!
        

	if(low[u]==dfn[u]){//low[u]==dfn[u]时,则从栈中不断弹出节点,直到x出栈停止。弹出的节点就是同一个连通分量的int v;	do{//一定要先执行再判断v=s.top();s.pop();be[v]=u;//把这些弹出的点标记同一个id号(连通分量号)ins[v]=0;if(u==v)break;//自己不要和自己加p[u]+=p[v];}while(v!=u);//直到是自己为止}

首先是缩点操作,要把该连通分量中点的权值加给连通分量点自己(类似无向图的桥点), 

        

for (int i=1;i<=m;i++)//遍历每个边{int u=be[e[i].from],v=be[e[i].to];//from是起点,to是终点if (u!=v)//不同的分量号点间进行建边,有重边也不影响topo结果{newe[++tt]=(node){v,hh[u],u};hh[u]=tt;in[v]++;//建新边过程,相当于add功能}}

然后是给新DAG图建边,以便后面topo。

        

完整代码:

#include<bits/stdc++.h>
using namespace std;
const int maxn=10000+15;
int n,m,tot,head[maxn],tt,hh[maxn],p[maxn];//p是每个点的权值,head和tot和e是原图的,hh和tt和newe是新图的
int num,low[maxn],dfn[maxn],ins[maxn],be[maxn];//be是每个所属的连通分量号
int in[maxn],dp[maxn];
stack<int>s;
struct node{int to,next,from;}e[maxn*10],newe[maxn*10];void add(int u,int v){e[++tot]=(node){v,head[u],u};head[u]=tot;}void tarjan(int u){dfn[u]=low[u]=++num;//dfn访问序号,low使能回溯到的最早的dfnins[u]=1;s.push(u);//第一次访问节点时候入栈for(int i=head[u];i;i=e[i].next){int v=e[i].to;if(!dfn[v]){//没访问过就递归访问tarjan(v);low[u]=min(low[u],low[v]);//获取孩子的最小的low值   }else if(ins[v]){//已经访问过且在栈中获取dfn号low[u]=min(low[u],dfn[v]);}}if(low[u]==dfn[u]){//low[u]==dfn[u]时,则从栈中不断弹出节点,直到x出栈停止。弹出的节点就是同一个连通分量的int v;	do{//一定要先执行再判断v=s.top();s.pop();be[v]=u;//把这些弹出的点标记同一个id号(连通分量号)ins[v]=0;if(u==v)break;//自己不要和自己加p[u]+=p[v];}while(v!=u);//直到是自己为止}
}int topo()
{queue <int> q;int tot=0;for (int i=1;i<=n;i++){if(be[i]==i&&!in[i]){q.push(i);dp[i]=p[i];}}while (!q.empty()){int u=q.front();q.pop();for (int i=hh[u];i;i=newe[i].next){int v=newe[i].to;dp[v]=max(dp[v],dp[u]+p[v]);//要最大的起点嘛in[v]--;if (in[v]==0) q.push(v);}}int ans=0;for (int i=1;i<=n;i++)ans=max(ans,dp[i]);return ans;
}
int main()
{scanf("%d%d",&n,&m);for (int i=1;i<=n;i++)scanf("%d",&p[i]);//权值for (int i=1;i<=m;i++){int u,v;scanf("%d%d",&u,&v);add(u,v);}for (int i=1;i<=n;i++)if (!dfn[i]) tarjan(i);for (int i=1;i<=m;i++){int u=be[e[i].from],v=be[e[i].to];//from是起点,to是终点if (u!=v)//不同的分量号点间进行建边,有重边也不影响topo结果{newe[++tt]=(node){v,hh[u],u};hh[u]=tt;in[v]++;//建新边过程,相当于add功能}}printf("%d",topo());
}

这篇关于【算法每日一练]-图论(保姆级教程篇12 tarjan篇)#POJ3352道路建设 #POJ2553图的底部 #POJ1236校园网络 #缩点的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!


原文地址:
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.chinasem.cn/article/450698

相关文章

MQTT SpringBoot整合实战教程

《MQTTSpringBoot整合实战教程》:本文主要介绍MQTTSpringBoot整合实战教程,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考... 目录MQTT-SpringBoot创建简单 SpringBoot 项目导入必须依赖增加MQTT相关配置编写

在Java中基于Geotools对PostGIS数据库的空间查询实践教程

《在Java中基于Geotools对PostGIS数据库的空间查询实践教程》本文将深入探讨这一实践,从连接配置到复杂空间查询操作,包括点查询、区域范围查询以及空间关系判断等,全方位展示如何在Java环... 目录前言一、相关技术背景介绍1、评价对象AOI2、数据处理流程二、对AOI空间范围查询实践1、空间查

Logback在SpringBoot中的详细配置教程

《Logback在SpringBoot中的详细配置教程》SpringBoot默认会加载classpath下的logback-spring.xml(推荐)或logback.xml作为Logback的配置... 目录1. Logback 配置文件2. 基础配置示例3. 关键配置项说明Appender(日志输出器

Linux网络配置之网桥和虚拟网络的配置指南

《Linux网络配置之网桥和虚拟网络的配置指南》这篇文章主要为大家详细介绍了Linux中配置网桥和虚拟网络的相关方法,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 一、网桥的配置在linux系统中配置一个新的网桥主要涉及以下几个步骤:1.为yum仓库做准备,安装组件epel-re

Kali Linux安装实现教程(亲测有效)

《KaliLinux安装实现教程(亲测有效)》:本文主要介绍KaliLinux安装实现教程(亲测有效),具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、下载二、安装总结一、下载1、点http://www.chinasem.cn击链接 Get Kali | Kal

Web技术与Nginx网站环境部署教程

《Web技术与Nginx网站环境部署教程》:本文主要介绍Web技术与Nginx网站环境部署教程,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、Web基础1.域名系统DNS2.Hosts文件3.DNS4.域名注册二.网页与html1.网页概述2.HTML概述3.

spring security 超详细使用教程及如何接入springboot、前后端分离

《springsecurity超详细使用教程及如何接入springboot、前后端分离》SpringSecurity是一个强大且可扩展的框架,用于保护Java应用程序,尤其是基于Spring的应用... 目录1、准备工作1.1 引入依赖1.2 用户认证的配置1.3 基本的配置1.4 常用配置2、加密1. 密

WinForms中主要控件的详细使用教程

《WinForms中主要控件的详细使用教程》WinForms(WindowsForms)是Microsoft提供的用于构建Windows桌面应用程序的框架,它提供了丰富的控件集合,可以满足各种UI设计... 目录一、基础控件1. Button (按钮)2. Label (标签)3. TextBox (文本框

C#实现访问远程硬盘的图文教程

《C#实现访问远程硬盘的图文教程》在现实场景中,我们经常用到远程桌面功能,而在某些场景下,我们需要使用类似的远程硬盘功能,这样能非常方便地操作对方电脑磁盘的目录、以及传送文件,这次我们将给出一个完整的... 目录引言一. 远程硬盘功能展示二. 远程硬盘代码实现1. 底层业务通信实现2. UI 实现三. De

python如何下载网络文件到本地指定文件夹

《python如何下载网络文件到本地指定文件夹》这篇文章主要为大家详细介绍了python如何实现下载网络文件到本地指定文件夹,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下...  在python中下载文件到本地指定文件夹可以通过以下步骤实现,使用requests库处理HTTP请求,并结合o