大数据产业遭遇“垄断”和“孤岛”

2023-12-03 14:59

本文主要是介绍大数据产业遭遇“垄断”和“孤岛”,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在技术的推动下,大数据已不仅仅是一种应用工具,而是撬动经济增长的“生产力”,催生了体量巨大的新兴产业。业内专家指出,大数据已成为支撑社会有效运行的战略资源。目前我国亟须在数据融合、立法、安全方面完善顶层设计,为大数据产业的健康发展奠定基础。

大数据催生新兴业态

近年来中国大数据产业不断向纵深发展。一方面,产业初具规模。据易观国际统计,2015年我国大数据市场规模达102亿元,2017年有望达到170亿元。另一方面,大数据孕育了诸多新兴业态,激发了不同行业的活力。券商申万宏源的报告分析称,10年后大数据产业可撬动万亿元级的GDP发展。目前,大数据推动下势头强劲的当属三大领域:人工智能、大数据交易、智慧城市建设。

香港科技大学计算机科学及工程学系主任杨强表示,人工智能概念冷寂多年,近年来异军突起,是由于移动互联网的发展产生了大量数据,为人工智能发展的算法训练提供了条件。

目前,各类数据尚未充分融合,因此诞生了大数据交易的业态以满足这一市场需求。北京、贵州、武汉、西安等地相继建立了大数据交易平台。目前,规模较大的是北京和贵阳的交易平台。

2008年,IBM提出“智慧地球”理念,引发了中国智慧城市建设的热潮。大数据带动的智慧城市市场涵盖交通、旅游、医疗、教育等领域。在交通方面,打车软件使用量、使用频率远远超过此前出租车预约服务平台,其运作原理就是供需大数据的优化分配。在旅游景区管理方面,全国多个景点已经采用了电信运营商数据监控人流分布,避免人流密集导致的危险事件。

“前瞻产业研究院”估计,“十三五”期间,在移动互联网发展、大数据产业支持的情况下,智慧城市市场规模有望达4万亿元。

三重力量推动经济增长

如今,大数据不仅是经济“富矿”,更是战略资源。国务院去年印发的《促进大数据发展行动纲要》明确指出,数据已成为国家基础性战略资源。“十三五”规划纲要更是利用一章专门阐述了实施国家大数据战略的思路。

中国社会科学院信息化研究中心秘书长姜奇平表示,应从战略高度理解大数据对于经济增长的意义。

首先,大数据为创业创新提供了机遇。据业内估算,全国的大数据公司已超过了500家,分布在北京的最多,贵阳、武汉等推动大数据产业的城市也是创业重镇。根据大数据研究机构“数据猿”统计,2016年上半年,全球大数据行业共计发生157起投融资事件,中国发生了97起,超过总量的一半。

大数据分析服务公司神策数据创始人兼CEO桑文锋告诉记者,大数据创业之所以火热,一方面是由于技术条件成熟,另一方面是在经济转型升级的情况下,企业增长压力陡升,希望借助数据精准营销、高效生产。

其次,大数据为欠发达地区创造了赶超契机。以贵州为例,经济并不发达,却是首个获批建设国家级大数据综合试验区的地区。今年贵州省政府工作报告明确提出“把大数据作为全省‘弯道取直’、后发赶超的战略引擎。”

贵州省政府提供的数据显示,贵州省如今共有大数据电子信息产业企业1849家,今年上半年新增664家,同比增长60.92%。今年上半年,大数据核心业态、关联业态、衍生业态共实现产值868.89亿元。河北张家口也大力支持大数据产业,打造了京北云谷大数据管理基地、张北云联数据中心等大数据基地。

第三,大数据助力政府治理能力的提高,客观上为经济增长减少了阻力、提供了“润滑剂”。如天津建成运用大数据的智慧型“审计监督一张网”管理系统,实现对财政资金和公共资金等的实时监督;咸阳市政府和亚信数据公司合作,建立了识别诈骗获取医保行为的模型,2015年为咸阳政府节省了3000万元的财政开支。

产业健康发展需完善顶层设计

大数据虽然对经济发展而言意义重大,然而产业刚刚起步,仍有诸多挑战。

首先,企业“垄断”数据现象突出。BAT三大巨头凭借其固有的互联网优势,掌握了大量的数据。根据易观国际数据显示,阿里和腾讯的第三方支付服务占据了中国市场的九成。但BAT体系并不开放,如高德地图被阿里巴巴收购之后,不再向外界公开开放地图数据。国家工商总局也曾表示,个别互联网巨头不愿配合监管分享数据。

其次,数据非法交易猖獗。山东出现两起针对高校新生的电信诈骗案,便涉及数据非法交易利用。除了传统的非法数据兜售外,借助技术手段盗取信息的现象日益增多。记者发现,不少网站都出售“移动终端信息采集仪”,利用无线技术快速提取手机电话簿、通信记录、短消息等数据。

第三,数据“孤岛”林立、融合困难。政府与企业都面临这一难题。“拿走数据的多,贡献数据的少。”贵阳大数据交易所执行总裁王叁寿表示,不少企业以保护商业机密或节省数据整理成本等为理由,不愿意交易自身数据。部分政府部门也缺乏数据公开的动力,有的是因“懒政”而让数据沉睡,有的则是利用数据已经开展商业化应用,因此不愿共享。北京市经信委自2013年起推动建设北京市政务数据资源网,至今仍有多家政府部门不配合提供数据。

第四,相关法律体系尚不健全。对于个人数据隐私保护、数据权属、政府数据公开等问题,尚无明确规定,基本处于监管缺失的状态。中国政法大学传播法中心研究员朱巍介绍,目前对个人数据的保护,大多依照2012年通过的“关于加强网络信息保护的决定”,远不能应对实际需求。王叁寿表示,数据交易平台在运行中也有数据权属不明的困惑,期待法律明确交易规则和红线,让企业有法可依。

第五,大数据产业对外技术依赖现象严重,安全堪忧。中国工程院院士邬贺铨表示,发达国家,尤其是美国,大数据产业链非常完整,软硬件能力均领先全球。而中国在芯片、硬件、云计算等方面则较为薄弱,芯片尤其依赖进口,或成为未来产业掣肘。

业内人士建议,我国应加强顶层设计,完善立法,规范数据交易行为,鼓励数据互联互通,将数据公开共享纳入政府部门考核,同时加大力度攻坚克难,在芯片、云计算等大数据的关键领域取得突破,建成健康、安全的大数据产业环境。


本文作者:佚名

来源:51CTO

这篇关于大数据产业遭遇“垄断”和“孤岛”的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/449858

相关文章

PHP轻松处理千万行数据的方法详解

《PHP轻松处理千万行数据的方法详解》说到处理大数据集,PHP通常不是第一个想到的语言,但如果你曾经需要处理数百万行数据而不让服务器崩溃或内存耗尽,你就会知道PHP用对了工具有多强大,下面小编就... 目录问题的本质php 中的数据流处理:为什么必不可少生成器:内存高效的迭代方式流量控制:避免系统过载一次性

C#实现千万数据秒级导入的代码

《C#实现千万数据秒级导入的代码》在实际开发中excel导入很常见,现代社会中很容易遇到大数据处理业务,所以本文我就给大家分享一下千万数据秒级导入怎么实现,文中有详细的代码示例供大家参考,需要的朋友可... 目录前言一、数据存储二、处理逻辑优化前代码处理逻辑优化后的代码总结前言在实际开发中excel导入很

MyBatis-plus处理存储json数据过程

《MyBatis-plus处理存储json数据过程》文章介绍MyBatis-Plus3.4.21处理对象与集合的差异:对象可用内置Handler配合autoResultMap,集合需自定义处理器继承F... 目录1、如果是对象2、如果需要转换的是List集合总结对象和集合分两种情况处理,目前我用的MP的版本

GSON框架下将百度天气JSON数据转JavaBean

《GSON框架下将百度天气JSON数据转JavaBean》这篇文章主要为大家详细介绍了如何在GSON框架下实现将百度天气JSON数据转JavaBean,文中的示例代码讲解详细,感兴趣的小伙伴可以了解下... 目录前言一、百度天气jsON1、请求参数2、返回参数3、属性映射二、GSON属性映射实战1、类对象映

C# LiteDB处理时间序列数据的高性能解决方案

《C#LiteDB处理时间序列数据的高性能解决方案》LiteDB作为.NET生态下的轻量级嵌入式NoSQL数据库,一直是时间序列处理的优选方案,本文将为大家大家简单介绍一下LiteDB处理时间序列数... 目录为什么选择LiteDB处理时间序列数据第一章:LiteDB时间序列数据模型设计1.1 核心设计原则

Java+AI驱动实现PDF文件数据提取与解析

《Java+AI驱动实现PDF文件数据提取与解析》本文将和大家分享一套基于AI的体检报告智能评估方案,详细介绍从PDF上传、内容提取到AI分析、数据存储的全流程自动化实现方法,感兴趣的可以了解下... 目录一、核心流程:从上传到评估的完整链路二、第一步:解析 PDF,提取体检报告内容1. 引入依赖2. 封装

MySQL中查询和展示LONGBLOB类型数据的技巧总结

《MySQL中查询和展示LONGBLOB类型数据的技巧总结》在MySQL中LONGBLOB是一种二进制大对象(BLOB)数据类型,用于存储大量的二进制数据,:本文主要介绍MySQL中查询和展示LO... 目录前言1. 查询 LONGBLOB 数据的大小2. 查询并展示 LONGBLOB 数据2.1 转换为十

使用SpringBoot+InfluxDB实现高效数据存储与查询

《使用SpringBoot+InfluxDB实现高效数据存储与查询》InfluxDB是一个开源的时间序列数据库,特别适合处理带有时间戳的监控数据、指标数据等,下面详细介绍如何在SpringBoot项目... 目录1、项目介绍2、 InfluxDB 介绍3、Spring Boot 配置 InfluxDB4、I

Java整合Protocol Buffers实现高效数据序列化实践

《Java整合ProtocolBuffers实现高效数据序列化实践》ProtocolBuffers是Google开发的一种语言中立、平台中立、可扩展的结构化数据序列化机制,类似于XML但更小、更快... 目录一、Protocol Buffers简介1.1 什么是Protocol Buffers1.2 Pro

Python实现数据可视化图表生成(适合新手入门)

《Python实现数据可视化图表生成(适合新手入门)》在数据科学和数据分析的新时代,高效、直观的数据可视化工具显得尤为重要,下面:本文主要介绍Python实现数据可视化图表生成的相关资料,文中通过... 目录前言为什么需要数据可视化准备工作基本图表绘制折线图柱状图散点图使用Seaborn创建高级图表箱线图热