简介Kadane算法及相关的普通动态规划

2023-12-03 13:52

本文主要是介绍简介Kadane算法及相关的普通动态规划,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

简介Kadane算法及相关的普通动态规划

本文详细论述Kadane算法的经典题目,并通过“首先列出动态规划解法,再改为Kadane算法解法”的方式,讲解二者的不同。最后给出一道Kadane算法变体的题目,解法极为简洁优美。

Kadane算法也是一种动态规划算法,它的时间复杂度也是O(n), 但它与普通的动态规划有什么不同呢?这里先给出结论,不同就是:它的空间复杂度是O(1),而普通动态规划的空间复杂度是O(n).

下面的例题-1是一道经典的可以用Kadane算法求解的题目。

例题-1 LeetCode-53

给定一个整数数组,求它的子数组之和的最大值。
比如,数组为[-2,1,-3,4,-1,2,1,-5,4], 则子数组元素之和最大为6,因为当子数组为 [4,-1,2,1]时可取得最大值。

解法-1. 普通动态规划法

众所周知,动态规划法需要有一个递推公式。这个公式的思考与解析如下。
假设有一个同样大小的dp数组,其第i个位置的元素dp[i]的含义是:原整数数组s从0至i处且包含元素i时的所有子数组中子数组元素之和的最大值。
听见来很拗口是不是。说白了就是,对于所有的以s[i]为最右元素的子数组求子数组元素之和,最大的那个值就是dp[i].
想一想,如果我们知道了所有的dp[0], dp[1], …,dp[size-1], 那么我们是不是就知道了子数组之和的最大值了呢。
这里要注意的是,当 i < j < size 时, dp[i] 有可能大于 dp[j].
知道 dp[i] 的定义后,那么 dp[i+1] 是什么呢?
很明显,dp[i] 与 dp[i+1] 的差异就在于原数组的第 i+1 个元素,即 s[i+1].
一种可能是:s[i+1]可以被继续累加到当前最大值上,即dp[i]和s[i+1]都是非负数,那么 dp[i+1] = dp[i] + s[i+1]
另一种可能是:s[i+1]不可以被继续累加到当前最大值上, 比如:dp[i]是负数,而s[i+1]又比dp[i]大, 于是只好从s[i+1]开始算,即 dp[i+1] = s[i+1]
综合这2个式子:dp[i+1] = max(dp[i]+s[i+1], s[i+1])
换一种写法: dp[i] = max(dp[i-1]+s[i], s[i])
在当前定义下,我们最后需要返回 dp 数组中的最大元素。

这里有一个问题,为什么不能把 dp[i] 定义为“从0至i处的所有子数组中子数组元素之和的最大值”呢?
如果可以这么定义的话,那么我们就不需要在dp数组中找一个最大值,而只要返回dp数组的最后一个元素即可了。
其实对于有些问题时完全可以这么做的,比如下面的例题-2.
但是对于例题-1来说,鉴于其所求是子数组元素之和的最大值,它相当于对之前的多个元素有依赖关系,如果那样定义的话,则无法建立dp[i+1]和dp[i]之间的递推关系。
这个问题是一个隐藏较深且不太容易解释的问题。喜欢对算法作深入思考的朋友可以多想想这里,看是否有更加简洁精辟的见解。

普通动态规划法的代码还是比较简洁的,如下:

class Solution {public int maxSubArray(int[] nums) {int [] dp = new int [nums.length];dp[0] = nums[0];int result = nums[0];for (int i=1; i<nums.length; i++) {dp[i] = Math.max(nums[i], nums[i]+dp[i-1]);result = Math.max(result, dp[i]);}return result;}
}

解法-2. Kadane算法

上面的整个dp数组是否必要呢?
其实不是必要的。公式中的 dp[i] 和 dp[i-1] 看似不同,但其实可以巧妙地用一个变量来代表,从而整个dp数组也就不需要了 – 只用一个变量来维护dp[i]. 所以Kadane算法的空间复杂度是O(1). 这个技巧还是很值得学习的。

代码如下:

class Solution {public int maxSubArray(int[] nums) {int max_here = nums[0];int result = nums[0];for (int i=1; i<nums.length; i++) {max_here = Math.max(nums[i], nums[i]+max_here);result = Math.max(result, max_here);}return result;}
}

例题-1中对于dp[i]的定义还是不那么符合人的直觉的,而下面例题-2对 dp[i] 的设定则非常直接了。

例题-2. LeetCode-121

给定一个整数数组,其中每一个数字代表了股票在当天的价格。你每天只能操作一次,这一次是买或者卖股票,请最大化利润。
比如:[7,1,5,3,6,4],最大化利润是5. 因为在价格为1的那天买,在价格为6的那天卖,可以得到5的利润。

解法-1. 普通动态规划法

有了前面那么难的题,这题就简单了。对于动态规划,就是主要要考虑递推公式。
设定一个同样大小的数组dp,那么很自然地就想到 dp[i] 就代表到当天为止的最大利润。
那么dp[i+1]是什么呢? 假设原数组叫prices, 此时相当于多了一个 prices[i+1], 所引起的变化就是也许 prices[i+1] 能得到更高利润。
怎么会得到更高利润呢?如果用prices[i+1]减去之前的最小值,则是它得到的利润值;如果这个值比dp[i]大,则有了更高利润。
由此可见,要记录一个历史最小值。这个并不难实现。
这样一分析,递推公式就出来了: dp[i+1] = max(dp[i], prices[i+1]-minValue)
由此也可见,我们最后需要返回的就是 dp[size-1],即dp数组的最后一个元素。

普通动态规划法代码如下:

int maxProfit(vector<int>& prices) {if (prices.empty()) return 0;vector<int> dp(prices.size());dp[0] = 0;int minPrice = prices[0];for (int i=1; i<prices.size(); i++) {dp[i] = max(dp[i-1], prices[i] - minPrice);if (prices[i] < minPrice) minPrice = prices[i];}return dp[prices.size()-1];
}

解法-2. Kadane算法

仍然对普通动态规划法稍作优化,用一个变量代替dp[i]和dp[i+1], 由此消除dp数组。
代码如下:

int maxProfit(vector<int>& prices) {if (prices.empty()) return 0;int max_here = 0;int minPrice = prices[0];for (int i=1; i<prices.size(); i++) {max_here = max(max_here, prices[i] - minPrice);if (prices[i] < minPrice) minPrice = prices[i];}return max_here;
}

除了上面2道例题,有的时候会出现 Kadane 算法的变体。这个时候需要因为一些特殊条件而做出一些巧妙的变化,则可以继续使用Kadane算法。

例题-3 LeetCode-152

给定一个整数数组,求其子数组的乘积最大值。
比如:[2,3,-2,4],其子数组乘积最大值为6,因为 2x3=6.

首先,还是要找出递推数组。假设dp[i]为“至位置i处的包含了位置i的子数组乘积最大值”,那么对于例子中给定的数组,对应的dp数组是这样的:[2, 6, -2, 4]
所以, dp[i+1] = max(dp[i]*s[i+1], s[i])
由此似乎可以写出程序了。和例题-1很像嘛!是不是直接套就可以了?
但注意这样的数组: [-2, 3, -4], 很明显答案是24,但应用上面算法的dp数组是 [-2, 3, 3].
原因很简单,每遇到负数一次则结果反转,也就是说,如果应用了上面的算法,则-2无法被后面再一次遇到负数时用上。
换句话说,尽管dp[1]为3是正确的,但dp[2]还是3就不正确了,而此时dp[0]或原数组nums[0]的信息无法被dp[2]用上。
至此,普通的动态规划似乎不再能够应用了,因为递推关系似乎无法推出来。怎么办呢?其实Kadane算法仍可以应用。
鉴于负数每乘一次都会反转结果,我们就只好一直乘,直至结尾。如果负数的个数是偶数,则这就是结果(先不考虑0)。
但如果负数的个数是奇数,比如1个,那我们就不知道是在这个负数的左边还是右边会出现乘积最大值了。
这又怎么办呢?也很好办。从左往右和从右往左分别扫一遍。因为我们不可能在一遇到负数的时候就重启计算。
最后,一旦遇到0怎么办呢?这就要重启计算了。相当于数字0将数组分段了。一旦遇到0,则从0后面的第1个数字开始,重启我们的乘法运算,直至下一个0或数组在当前方向上结束。
啰里吧嗦说了很多,但代码其实还是很简洁的。

class Solution {public int maxProduct(int[] nums) {long r1 = Integer.MIN_VALUE;long p1 = 1;for (int i=0; i<nums.length; i++) {p1 = p1 * nums[i];if (p1 > r1) r1 = p1;if (p1 == 0) p1 = 1;}long r2 = Integer.MIN_VALUE;long p2 = 1;for (int i=nums.length-1; i>=0; i--) {p2 = p2 * nums[i];if (p2 > r2) r2 = p2;if (p2 == 0) p2 = 1;}return (int)(r1>r2?r1:r2);}
}

由本题可见,Kadane算法其实可能比普通动态规划更加灵活。

(END)

这篇关于简介Kadane算法及相关的普通动态规划的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/449683

相关文章

Spring Security简介、使用与最佳实践

《SpringSecurity简介、使用与最佳实践》SpringSecurity是一个能够为基于Spring的企业应用系统提供声明式的安全访问控制解决方案的安全框架,本文给大家介绍SpringSec... 目录一、如何理解 Spring Security?—— 核心思想二、如何在 Java 项目中使用?——

Java使用Javassist动态生成HelloWorld类

《Java使用Javassist动态生成HelloWorld类》Javassist是一个非常强大的字节码操作和定义库,它允许开发者在运行时创建新的类或者修改现有的类,本文将简单介绍如何使用Javass... 目录1. Javassist简介2. 环境准备3. 动态生成HelloWorld类3.1 创建CtC

Java Stream 并行流简介、使用与注意事项小结

《JavaStream并行流简介、使用与注意事项小结》Java8并行流基于StreamAPI,利用多核CPU提升计算密集型任务效率,但需注意线程安全、顺序不确定及线程池管理,可通过自定义线程池与C... 目录1. 并行流简介​特点:​2. 并行流的简单使用​示例:并行流的基本使用​3. 配合自定义线程池​示

PostgreSQL简介及实战应用

《PostgreSQL简介及实战应用》PostgreSQL是一种功能强大的开源关系型数据库管理系统,以其稳定性、高性能、扩展性和复杂查询能力在众多项目中得到广泛应用,本文将从基础概念讲起,逐步深入到高... 目录前言1. PostgreSQL基础1.1 PostgreSQL简介1.2 基础语法1.3 数据库

Python库 Django 的简介、安装、用法入门教程

《Python库Django的简介、安装、用法入门教程》Django是Python最流行的Web框架之一,它帮助开发者快速、高效地构建功能强大的Web应用程序,接下来我们将从简介、安装到用法详解,... 目录一、Django 简介 二、Django 的安装教程 1. 创建虚拟环境2. 安装Django三、创

浅谈MySQL的容量规划

《浅谈MySQL的容量规划》进行MySQL的容量规划是确保数据库能够在当前和未来的负载下顺利运行的重要步骤,容量规划包括评估当前资源使用情况、预测未来增长、调整配置和硬件资源等,感兴趣的可以了解一下... 目录一、评估当前资源使用情况1.1 磁盘空间使用1.2 内存使用1.3 CPU使用1.4 网络带宽二、

MySQL 索引简介及常见的索引类型有哪些

《MySQL索引简介及常见的索引类型有哪些》MySQL索引是加速数据检索的特殊结构,用于存储列值与位置信息,常见的索引类型包括:主键索引、唯一索引、普通索引、复合索引、全文索引和空间索引等,本文介绍... 目录什么是 mysql 的索引?常见的索引类型有哪些?总结性回答详细解释1. MySQL 索引的概念2

go动态限制并发数量的实现示例

《go动态限制并发数量的实现示例》本文主要介绍了Go并发控制方法,通过带缓冲通道和第三方库实现并发数量限制,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面... 目录带有缓冲大小的通道使用第三方库其他控制并发的方法因为go从语言层面支持并发,所以面试百分百会问到

一文详解SpringBoot中控制器的动态注册与卸载

《一文详解SpringBoot中控制器的动态注册与卸载》在项目开发中,通过动态注册和卸载控制器功能,可以根据业务场景和项目需要实现功能的动态增加、删除,提高系统的灵活性和可扩展性,下面我们就来看看Sp... 目录项目结构1. 创建 Spring Boot 启动类2. 创建一个测试控制器3. 创建动态控制器注

Qt QCustomPlot库简介(最新推荐)

《QtQCustomPlot库简介(最新推荐)》QCustomPlot是一款基于Qt的高性能C++绘图库,专为二维数据可视化设计,它具有轻量级、实时处理百万级数据和多图层支持等特点,适用于科学计算、... 目录核心特性概览核心组件解析1.绘图核心 (QCustomPlot类)2.数据容器 (QCPDataC