golang WaitGroup的使用与底层实现

2023-12-02 19:45

本文主要是介绍golang WaitGroup的使用与底层实现,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

使用的go版本为 go1.21.2

首先我们写一个简单的WaitGroup的使用代码

package mainimport ("fmt""sync"
)func main() {var wg sync.WaitGroupwg.Add(1)go func() {defer wg.Done()fmt.Println("xiaochuan")}()wg.Wait()
}

WaitGroup的基本使用场景就是等待子协程完毕后,执行主协程,比如我的api需要多个下游api支持开多个协程进行访问,等待耗时最高的api返回过来后执行,这种场景是比较适合WaitGroup的。

我们来看一下WaitGroup构造体相关的底层源码

WaitGroup结构体

//代码位于 GOROOT/src/sync/waitgroup.go L:23type WaitGroup struct {//防止WaitGroup被复制, 君子协议,编译可以通过,某些编辑器会报waring//有兴趣可以看一下这里 https://github.com/golang/go/issues/8005#issuecomment-190753527noCopy noCopy// 高32位表示计数器,低32位表示等待的waiter数量。// 低版本go的state字段类型是[3]uint32,需要进行位数对齐state atomic.Uint64// 信号量sema  uint32
}
编辑器的warning

Add函数

//代码位于 GOROOT/src/sync/waitgroup.go L:43func (wg *WaitGroup) Add(delta int) {if race.Enabled { //使用竞态检查if delta < 0 { //如果传递的数值是负数,递减等待同步// Synchronize decrements with Wait.race.ReleaseMerge(unsafe.Pointer(wg))}race.Disable() //竞态检查 禁用defer race.Enable() //竞态检查 启用}//计算我们要进行add的值,将其加入到比特位上//<< 32 为二进制左位移 32位state := wg.state.Add(uint64(delta) << 32)v := int32(state >> 32) // state变量的高位是计数w := uint32(state) // state变量的低位是waiter计数//使用竞态检查,当前传入的值与v相同,说明当前是第一次调度addif race.Enabled && delta > 0 && v == int32(delta) {// The first increment must be synchronized with Wait.// Need to model this as a read, because there can be// several concurrent wg.counter transitions from 0.race.Read(unsafe.Pointer(&wg.sema))}//如果 计数器小于0 说明了多进行了done操作或者add传递负数,业务代码的出现逻辑错误了if v < 0 {panic("sync: negative WaitGroup counter")}// 如果当前存在等待,而且计数器不为0// 说明当前有地方调度了Wait后,又进行add操作了, 违反了官方的使用设计if w != 0 && delta > 0 && v == int32(delta) {panic("sync: WaitGroup misuse: Add called concurrently with Wait")}// 计数大于0,没有等待,就是单纯的add直接返回if v > 0 || w == 0 {return}// 再做一次检测,防止有并发调度// 比如我有两个goroutine A goroutine 在add, B goroutine 在调度 wait // 刚刚好A加完了计数,B突然wait导致state更变就会触发这个panicif wg.state.Load() != state {panic("sync: WaitGroup misuse: Add called concurrently with Wait")}// 重置waiter为0wg.state.Store(0)for ; w != 0; w-- { // 逐步释放信号量runtime_Semrelease(&wg.sema, false, 0)}
}

Done函数

//代码位于 GOROOT/src/sync/waitgroup.go L:86//这个很简单 调用了一下add函数传了一个-1
func (wg *WaitGroup) Done() {wg.Add(-1)
}

Wait函数

//代码位于 GOROOT/src/sync/waitgroup.go L:91func (wg *WaitGroup) Wait() {if race.Enabled { //使用竞态检查race.Disable() //竞态检查 禁用}for {state := wg.state.Load() // 原子操作读取state字段v := int32(state >> 32) // state变量的高位是计数w := uint32(state) // state变量的低位是waiter计数if v == 0 { // 如果当前计数器为0 就没必要等待直接返回了if race.Enabled {race.Enable() //竞态检查 启用race.Acquire(unsafe.Pointer(wg))}return}// 将waiter计数+1 因为waiter处于低32位所以不需要位移直接加就行了if wg.state.CompareAndSwap(state, state+1) {if race.Enabled && w == 0 { // 使用竞态检查,第一次进行wait操作// Wait must be synchronized with the first Add.// Need to model this is as a write to race with the read in Add.// As a consequence, can do the write only for the first waiter,// otherwise concurrent Waits will race with each other.race.Write(unsafe.Pointer(&wg.sema))}// 获取信号量,这行代码会进行G的阻塞runtime_Semacquire(&wg.sema)//重新获取一下state,正常来讲计数为0, waiter为0//执行判断之前,又有一个协程进行了add操作,会触发panicif wg.state.Load() != 0 {panic("sync: WaitGroup is reused before previous Wait has returned")}if race.Enabled { //使用竞态检查race.Enable() //竞态检查 启用race.Acquire(unsafe.Pointer(wg))}return}}
}

总结

我们从上面的源码分析了解WaitGroup的数据结构、Add、Done和Wait这些基本操作原理,在项目中我们可以使用比特位来减少内存的占用,从源码分析我们得知Go官方设计不允许进行WaitGroup复制(君子协议)与并发调度同一个WaitGroup操作。

这篇关于golang WaitGroup的使用与底层实现的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/446570

相关文章

SpringCloud整合MQ实现消息总线服务方式

《SpringCloud整合MQ实现消息总线服务方式》:本文主要介绍SpringCloud整合MQ实现消息总线服务方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐... 目录一、背景介绍二、方案实践三、升级版总结一、背景介绍每当修改配置文件内容,如果需要客户端也同步更新,

Dubbo之SPI机制的实现原理和优势分析

《Dubbo之SPI机制的实现原理和优势分析》:本文主要介绍Dubbo之SPI机制的实现原理和优势,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录Dubbo中SPI机制的实现原理和优势JDK 中的 SPI 机制解析Dubbo 中的 SPI 机制解析总结Dubbo中

java中XML的使用全过程

《java中XML的使用全过程》:本文主要介绍java中XML的使用全过程,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录什么是XML特点XML作用XML的编写语法基本语法特殊字符编写约束XML的书写格式DTD文档schema文档解析XML的方法​​DOM解析XM

使用Java实现Navicat密码的加密与解密的代码解析

《使用Java实现Navicat密码的加密与解密的代码解析》:本文主要介绍使用Java实现Navicat密码的加密与解密,通过本文,我们了解了如何利用Java语言实现对Navicat保存的数据库密... 目录一、背景介绍二、环境准备三、代码解析四、核心代码展示五、总结在日常开发过程中,我们有时需要处理各种软

Java 压缩包解压实现代码

《Java压缩包解压实现代码》Java标准库(JavaSE)提供了对ZIP格式的原生支持,通过java.util.zip包中的类来实现压缩和解压功能,本文将重点介绍如何使用Java来解压ZIP或RA... 目录一、解压压缩包1.zip解压代码实现:2.rar解压代码实现:3.调用解压方法:二、注意事项三、总

NGINX 配置内网访问的实现步骤

《NGINX配置内网访问的实现步骤》本文主要介绍了NGINX配置内网访问的实现步骤,Nginx的geo模块限制域名访问权限,仅允许内网/办公室IP访问,具有一定的参考价值,感兴趣的可以了解一下... 目录需求1. geo 模块配置2. 访问控制判断3. 错误页面配置4. 一个完整的配置参考文档需求我们有一

Linux实现简易版Shell的代码详解

《Linux实现简易版Shell的代码详解》本篇文章,我们将一起踏上一段有趣的旅程,仿照CentOS–Bash的工作流程,实现一个功能虽然简单,但足以让你深刻理解Shell工作原理的迷你Sh... 目录一、程序流程分析二、代码实现1. 打印命令行提示符2. 获取用户输入的命令行3. 命令行解析4. 执行命令

基于MongoDB实现文件的分布式存储

《基于MongoDB实现文件的分布式存储》分布式文件存储的方案有很多,今天分享一个基于mongodb数据库来实现文件的存储,mongodb支持分布式部署,以此来实现文件的分布式存储,需要的朋友可以参考... 目录一、引言二、GridFS 原理剖析三、Spring Boot 集成 GridFS3.1 添加依赖

利用Python实现Excel文件智能合并工具

《利用Python实现Excel文件智能合并工具》有时候,我们需要将多个Excel文件按照特定顺序合并成一个文件,这样可以更方便地进行后续的数据处理和分析,下面我们看看如何使用Python实现Exce... 目录运行结果为什么需要这个工具技术实现工具的核心功能代码解析使用示例工具优化与扩展有时候,我们需要将

使用Nginx配置文件服务器方式

《使用Nginx配置文件服务器方式》:本文主要介绍使用Nginx配置文件服务器方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1. 为什么选择 Nginx 作为文件服务器?2. 环境准备3. 配置 Nginx 文件服务器4. 将文件放入服务器目录5. 启动 N