【数据中台】开源项目(5)-Amoro

2023-12-02 19:44
文章标签 数据 项目 开源 amoro

本文主要是介绍【数据中台】开源项目(5)-Amoro,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

介绍

        Amoro is a Lakehouse management system built on open data lake formats. Working with compute engines including Flink, Spark, and Trino, Amoro brings pluggable and self-managed features for Lakehouse to provide out-of-the-box data warehouse experience, and helps data platforms or products easily build infra-decoupled, stream-and-batch-fused and lake-native architecture。
Amoro定位是一个搭建在 Apache Iceberg之上的流式湖仓服务,流式强调向实时能力的拓展,服务则强调管理、标准化度量,以及其他可以抽象到基础软件中的湖仓一体能力。
通过 Amoro,用户可以在 Flink、Spark、Trino 等引擎上实现更加优化的 CDC、流式更新、OLAP 等功能, 结合数据湖高效的离线处理能力,Arctic 能够服务于更多流批混用的场景;同时,Arctic 的结构自优化、并发冲突解决以及标准化的湖仓管理功能,将有效减少用户在数据湖管理和优化上的负担。
开源地址: GitHub - NetEase/amoro: Amoro is a Lakehouse management system built on open data lake formats.

Amoro架构

The architecture of Amoro is as follows:
The core components of Amoro include:
  • AMS: Amoro Management Service provides Lakehouse management features, like self-optimizing, data expiration, etc. It also provides a unified catalog service for all computing engines, which can also be combined with existing metadata services.
  • Plugins: Amoro provides a wide selection of external plugins to meet different scenarios.
  • Optimizers: The self-optimizing execution engine plugin asynchronously performs merging, sorting, deduplication, layout optimization, and other operations on all type table format tables.
  • Terminal: SQL command-line tools, provide various implementations like local Spark and Kyuubi.
  • LogStore: Provide millisecond to second level SLAs for real-time data processing based on message queues like Kafka and Pulsar.

支持的格式

Amoro can manage tables of different table formats, similar to how MySQL/ClickHouse can choose different storage engines. Amoro meets diverse user needs by using different table formats. Currently, Amoro supports three table formats:
  • Iceberg format: means using the native table format of the Apache Iceberg, which has all the features and characteristics of Iceberg.
  • Mixed-Iceberg format: built on top of Iceberg format, which can accelerate data processing using LogStore and provides more efficient query performance and streaming read capability in CDC scenarios.
  • Mixed-Hive format: has the same features as the Mixed-Iceberg tables but is compatible with a Hive table. Support upgrading Hive tables to Mixed-Hive tables, and allow Hive’s native read and write methods after upgrading.

支持的引擎

Iceberg format

Iceberg format tables use the engine integration method provided by the Iceberg community. For details, please refer to: Iceberg Docs.

Paimon format

Paimon format tables use the engine integration method provided by the Paimon community. For details, please refer to: Paimon Docs.

Mixed format

Amoro support multiple processing engines for Mixed format as below:
Processing Engine
Version
Batch Read
Batch Write
Batch Overwrite
Streaming Read
Streaming Write
Create Table
Alter Table
Flink
1.15.x, 1.16.x and 1.17.x
Spark
3.1, 3.2, 3.3
Hive
2.x, 3.x
Trino
406

应用场景

Self-managed streaming Lakehouse

Amoro makes it easier for users to handle the challenges of writing to a real-time data lake, such as ingesting append-only event logs or CDC data from databases. In these scenarios, the rapid increase of fragment and redundant files cannot be ignored. To address this issue, Amoro provides a pluggable streaming data self-optimizing mechanism that automatically compacts fragment files and removes expired data, ensuring high-quality table queries while reducing system costs.

Stream-and-batch-fused data pipeline

Whether in the AI or BI business field , the requirement for real-time analysis is becoming increasingly high. The traditional approach of using one streaming job to complete all data processing from the source to the end is no longer applicable. There is an increasing demand for layered construction of streaming data pipeline, and the traditional layered construction approach based on message queues can cause a inconsistency problem between the streaming and batch data processing. Building a unified stream-and-batch-fused pipeline based on new data lake formats is the future direction for solving these problems. Amoro fully leverages the characteristics of the new data lake table formats about unified streaming and batch processing, not only ensuring the quality of data in the streaming pileline but also enhancing critical features such as incremental reading for CDC data and streaming dimension table association, helping users to build a stream-and-batch-fused data pipeline.

Cloud-native Lakehouse

Currently, most data platforms and products are tightly coupled with their underlying infrastructure(such as the storage layer). The migration of infrastructure, such as switching to cloud-native OSS, may require extensive adaptation efforts or even be impossible. However, Amoro provides an infra-decoupled, lake-native architecture built on top of the infrastructure. This allows products based on Amoro to interact with the underlying infrastructure through a unified interface (Amoro Catalog service), protecting upper-layer products from the impact of infrastructure switch.

这篇关于【数据中台】开源项目(5)-Amoro的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!


原文地址:
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.chinasem.cn/article/446567

相关文章

golang实现动态路由的项目实践

《golang实现动态路由的项目实践》本文主要介绍了golang实现动态路由项目实践,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习... 目录一、动态路由1.结构体(数据库的定义)2.预加载preload3.添加关联的方法一、动态路由1

Spring 缓存在项目中的使用详解

《Spring缓存在项目中的使用详解》Spring缓存机制,Cache接口为缓存的组件规范定义,包扩缓存的各种操作(添加缓存、删除缓存、修改缓存等),本文给大家介绍Spring缓存在项目中的使用... 目录1.Spring 缓存机制介绍2.Spring 缓存用到的概念Ⅰ.两个接口Ⅱ.三个注解(方法层次)Ⅲ.

8种快速易用的Python Matplotlib数据可视化方法汇总(附源码)

《8种快速易用的PythonMatplotlib数据可视化方法汇总(附源码)》你是否曾经面对一堆复杂的数据,却不知道如何让它们变得直观易懂?别慌,Python的Matplotlib库是你数据可视化的... 目录引言1. 折线图(Line Plot)——趋势分析2. 柱状图(Bar Chart)——对比分析3

Spring Boot 整合 Redis 实现数据缓存案例详解

《SpringBoot整合Redis实现数据缓存案例详解》Springboot缓存,默认使用的是ConcurrentMap的方式来实现的,然而我们在项目中并不会这么使用,本文介绍SpringB... 目录1.添加 Maven 依赖2.配置Redis属性3.创建 redisCacheManager4.使用Sp

一文教你Java如何快速构建项目骨架

《一文教你Java如何快速构建项目骨架》在Java项目开发过程中,构建项目骨架是一项繁琐但又基础重要的工作,Java领域有许多代码生成工具可以帮助我们快速完成这一任务,下面就跟随小编一起来了解下... 目录一、代码生成工具概述常用 Java 代码生成工具简介代码生成工具的优势二、使用 MyBATis Gen

springboot项目redis缓存异常实战案例详解(提供解决方案)

《springboot项目redis缓存异常实战案例详解(提供解决方案)》redis基本上是高并发场景上会用到的一个高性能的key-value数据库,属于nosql类型,一般用作于缓存,一般是结合数据... 目录缓存异常实践案例缓存穿透问题缓存击穿问题(其中也解决了穿透问题)完整代码缓存异常实践案例Red

Python Pandas高效处理Excel数据完整指南

《PythonPandas高效处理Excel数据完整指南》在数据驱动的时代,Excel仍是大量企业存储核心数据的工具,Python的Pandas库凭借其向量化计算、内存优化和丰富的数据处理接口,成为... 目录一、环境搭建与数据读取1.1 基础环境配置1.2 数据高效载入技巧二、数据清洗核心战术2.1 缺失

SpringBoot项目中Redis存储Session对象序列化处理

《SpringBoot项目中Redis存储Session对象序列化处理》在SpringBoot项目中使用Redis存储Session时,对象的序列化和反序列化是关键步骤,下面我们就来讲讲如何在Spri... 目录一、为什么需要序列化处理二、Spring Boot 集成 Redis 存储 Session2.1

Python处理超大规模数据的4大方法详解

《Python处理超大规模数据的4大方法详解》在数据的奇妙世界里,数据量就像滚雪球一样,越变越大,从最初的GB级别的小数据堆,逐渐演变成TB级别的数据大山,所以本文我们就来看看Python处理... 目录1. Mars:数据处理界的 “变形金刚”2. Dask:分布式计算的 “指挥家”3. CuPy:GPU

使用Vue-ECharts实现数据可视化图表功能

《使用Vue-ECharts实现数据可视化图表功能》在前端开发中,经常会遇到需要展示数据可视化的需求,比如柱状图、折线图、饼图等,这类需求不仅要求我们准确地将数据呈现出来,还需要兼顾美观与交互体验,所... 目录前言为什么选择 vue-ECharts?1. 基于 ECharts,功能强大2. 更符合 Vue