【数据中台】开源项目(5)-Amoro

2023-12-02 19:44
文章标签 数据 项目 开源 amoro

本文主要是介绍【数据中台】开源项目(5)-Amoro,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

介绍

        Amoro is a Lakehouse management system built on open data lake formats. Working with compute engines including Flink, Spark, and Trino, Amoro brings pluggable and self-managed features for Lakehouse to provide out-of-the-box data warehouse experience, and helps data platforms or products easily build infra-decoupled, stream-and-batch-fused and lake-native architecture。
Amoro定位是一个搭建在 Apache Iceberg之上的流式湖仓服务,流式强调向实时能力的拓展,服务则强调管理、标准化度量,以及其他可以抽象到基础软件中的湖仓一体能力。
通过 Amoro,用户可以在 Flink、Spark、Trino 等引擎上实现更加优化的 CDC、流式更新、OLAP 等功能, 结合数据湖高效的离线处理能力,Arctic 能够服务于更多流批混用的场景;同时,Arctic 的结构自优化、并发冲突解决以及标准化的湖仓管理功能,将有效减少用户在数据湖管理和优化上的负担。
开源地址: GitHub - NetEase/amoro: Amoro is a Lakehouse management system built on open data lake formats.

Amoro架构

The architecture of Amoro is as follows:
The core components of Amoro include:
  • AMS: Amoro Management Service provides Lakehouse management features, like self-optimizing, data expiration, etc. It also provides a unified catalog service for all computing engines, which can also be combined with existing metadata services.
  • Plugins: Amoro provides a wide selection of external plugins to meet different scenarios.
  • Optimizers: The self-optimizing execution engine plugin asynchronously performs merging, sorting, deduplication, layout optimization, and other operations on all type table format tables.
  • Terminal: SQL command-line tools, provide various implementations like local Spark and Kyuubi.
  • LogStore: Provide millisecond to second level SLAs for real-time data processing based on message queues like Kafka and Pulsar.

支持的格式

Amoro can manage tables of different table formats, similar to how MySQL/ClickHouse can choose different storage engines. Amoro meets diverse user needs by using different table formats. Currently, Amoro supports three table formats:
  • Iceberg format: means using the native table format of the Apache Iceberg, which has all the features and characteristics of Iceberg.
  • Mixed-Iceberg format: built on top of Iceberg format, which can accelerate data processing using LogStore and provides more efficient query performance and streaming read capability in CDC scenarios.
  • Mixed-Hive format: has the same features as the Mixed-Iceberg tables but is compatible with a Hive table. Support upgrading Hive tables to Mixed-Hive tables, and allow Hive’s native read and write methods after upgrading.

支持的引擎

Iceberg format

Iceberg format tables use the engine integration method provided by the Iceberg community. For details, please refer to: Iceberg Docs.

Paimon format

Paimon format tables use the engine integration method provided by the Paimon community. For details, please refer to: Paimon Docs.

Mixed format

Amoro support multiple processing engines for Mixed format as below:
Processing Engine
Version
Batch Read
Batch Write
Batch Overwrite
Streaming Read
Streaming Write
Create Table
Alter Table
Flink
1.15.x, 1.16.x and 1.17.x
Spark
3.1, 3.2, 3.3
Hive
2.x, 3.x
Trino
406

应用场景

Self-managed streaming Lakehouse

Amoro makes it easier for users to handle the challenges of writing to a real-time data lake, such as ingesting append-only event logs or CDC data from databases. In these scenarios, the rapid increase of fragment and redundant files cannot be ignored. To address this issue, Amoro provides a pluggable streaming data self-optimizing mechanism that automatically compacts fragment files and removes expired data, ensuring high-quality table queries while reducing system costs.

Stream-and-batch-fused data pipeline

Whether in the AI or BI business field , the requirement for real-time analysis is becoming increasingly high. The traditional approach of using one streaming job to complete all data processing from the source to the end is no longer applicable. There is an increasing demand for layered construction of streaming data pipeline, and the traditional layered construction approach based on message queues can cause a inconsistency problem between the streaming and batch data processing. Building a unified stream-and-batch-fused pipeline based on new data lake formats is the future direction for solving these problems. Amoro fully leverages the characteristics of the new data lake table formats about unified streaming and batch processing, not only ensuring the quality of data in the streaming pileline but also enhancing critical features such as incremental reading for CDC data and streaming dimension table association, helping users to build a stream-and-batch-fused data pipeline.

Cloud-native Lakehouse

Currently, most data platforms and products are tightly coupled with their underlying infrastructure(such as the storage layer). The migration of infrastructure, such as switching to cloud-native OSS, may require extensive adaptation efforts or even be impossible. However, Amoro provides an infra-decoupled, lake-native architecture built on top of the infrastructure. This allows products based on Amoro to interact with the underlying infrastructure through a unified interface (Amoro Catalog service), protecting upper-layer products from the impact of infrastructure switch.

这篇关于【数据中台】开源项目(5)-Amoro的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/446567

相关文章

SpringBoot多环境配置数据读取方式

《SpringBoot多环境配置数据读取方式》SpringBoot通过环境隔离机制,支持properties/yaml/yml多格式配置,结合@Value、Environment和@Configura... 目录一、多环境配置的核心思路二、3种配置文件格式详解2.1 properties格式(传统格式)1.

解决pandas无法读取csv文件数据的问题

《解决pandas无法读取csv文件数据的问题》本文讲述作者用Pandas读取CSV文件时因参数设置不当导致数据错位,通过调整delimiter和on_bad_lines参数最终解决问题,并强调正确参... 目录一、前言二、问题复现1. 问题2. 通过 on_bad_lines=‘warn’ 跳过异常数据3

C#监听txt文档获取新数据方式

《C#监听txt文档获取新数据方式》文章介绍通过监听txt文件获取最新数据,并实现开机自启动、禁用窗口关闭按钮、阻止Ctrl+C中断及防止程序退出等功能,代码整合于主函数中,供参考学习... 目录前言一、监听txt文档增加数据二、其他功能1. 设置开机自启动2. 禁止控制台窗口关闭按钮3. 阻止Ctrl +

java如何实现高并发场景下三级缓存的数据一致性

《java如何实现高并发场景下三级缓存的数据一致性》这篇文章主要为大家详细介绍了java如何实现高并发场景下三级缓存的数据一致性,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 下面代码是一个使用Java和Redisson实现的三级缓存服务,主要功能包括:1.缓存结构:本地缓存:使

在IntelliJ IDEA中高效运行与调试Spring Boot项目的实战步骤

《在IntelliJIDEA中高效运行与调试SpringBoot项目的实战步骤》本章详解SpringBoot项目导入IntelliJIDEA的流程,教授运行与调试技巧,包括断点设置与变量查看,奠定... 目录引言:为良驹配上好鞍一、为何选择IntelliJ IDEA?二、实战:导入并运行你的第一个项目步骤1

在MySQL中实现冷热数据分离的方法及使用场景底层原理解析

《在MySQL中实现冷热数据分离的方法及使用场景底层原理解析》MySQL冷热数据分离通过分表/分区策略、数据归档和索引优化,将频繁访问的热数据与冷数据分开存储,提升查询效率并降低存储成本,适用于高并发... 目录实现冷热数据分离1. 分表策略2. 使用分区表3. 数据归档与迁移在mysql中实现冷热数据分

C#解析JSON数据全攻略指南

《C#解析JSON数据全攻略指南》这篇文章主要为大家详细介绍了使用C#解析JSON数据全攻略指南,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录一、为什么jsON是C#开发必修课?二、四步搞定网络JSON数据1. 获取数据 - HttpClient最佳实践2. 动态解析 - 快速

MyBatis-Plus通用中等、大量数据分批查询和处理方法

《MyBatis-Plus通用中等、大量数据分批查询和处理方法》文章介绍MyBatis-Plus分页查询处理,通过函数式接口与Lambda表达式实现通用逻辑,方法抽象但功能强大,建议扩展分批处理及流式... 目录函数式接口获取分页数据接口数据处理接口通用逻辑工具类使用方法简单查询自定义查询方法总结函数式接口

IntelliJ IDEA2025创建SpringBoot项目的实现步骤

《IntelliJIDEA2025创建SpringBoot项目的实现步骤》本文主要介绍了IntelliJIDEA2025创建SpringBoot项目的实现步骤,文中通过示例代码介绍的非常详细,对大家... 目录一、创建 Spring Boot 项目1. 新建项目2. 基础配置3. 选择依赖4. 生成项目5.

SQL中如何添加数据(常见方法及示例)

《SQL中如何添加数据(常见方法及示例)》SQL全称为StructuredQueryLanguage,是一种用于管理关系数据库的标准编程语言,下面给大家介绍SQL中如何添加数据,感兴趣的朋友一起看看吧... 目录在mysql中,有多种方法可以添加数据。以下是一些常见的方法及其示例。1. 使用INSERT I