数据库设计实践:粒度的理解与应用示例

2023-12-02 18:12

本文主要是介绍数据库设计实践:粒度的理解与应用示例,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

粒度是描述数据存储和表示的详细程度。在数据库设计中,理解和正确选择粒度是非常重要的,因为它直接影响到数据的存储效率、查询性能和数据分析的灵活性。

文章目录

    • 粒度的类型:
    • 案例
    • 粒度选择的考虑因素
    • 实际应用

粒度的类型:

  • 细粒度(Fine-Grained): 数据存储在非常详细的层面。这意味着记录的每个小部分都被单独存储和管理。
  • 粗粒度(Coarse-Grained): 数据存储在较高的、更概括的层面。这种方式下,多个数据项可能会被组合在一起存储。

案例

假设我们有一个零售业务数据库。

细粒度例子: 存储每个客户的每次购买的所有商品的详细信息。例如,一个客户在一次购物中购买了三件商品,数据库将分别记录这三件商品的详细信息(如商品ID、购买数量、价格等)。

在这个表中,我们将存储每个客户的每次购买的每个商品的详细信息:

CREATE TABLE test.sales_detailed (id INT AUTO_INCREMENT PRIMARY KEY,customer_id INT,product_id INT,quantity INT,price DECIMAL(10, 2),purchase_date DATETIME
);INSERT INTO test.sales_detailed (customer_id, product_id, quantity, price, purchase_date)
VALUES
(1, 101, 2, 20.00, '2023-11-30 10:00:00'),
(1, 102, 1, 10.00, '2023-11-30 10:00:00'),
(2, 101, 1, 20.00, '2023-11-30 11:30:00');select * from test.sales_detailed;

如下所示:
在这里插入图片描述

粗粒度例子: 只存储每次购物的总金额和总商品数量。在这种情况下,相同的购物行为只会记录为一个总额和一个商品总数,而不是每个商品的具体信息。

在这个表中,我们只存储每次购物的总金额和总商品数量:

CREATE TABLE test.sales_summary (id INT AUTO_INCREMENT PRIMARY KEY,customer_id INT,total_quantity INT,total_amount DECIMAL(10, 2),purchase_date DATE
);-- 示例插入数据
INSERT INTO test.sales_summary (customer_id, total_quantity, total_amount, purchase_date)
VALUES
(1, 3, 50.00, '2023-11-30'),
(2, 1, 20.00, '2023-11-30');select * from test.sales_summary;

如下:
在这里插入图片描述

在这个示例中,sales_detailed 表展示了每个客户每次购物时每个商品的具体信息,这是一个典型的细粒度表。而 sales_summary 表则简化了这些信息,只展示了每次购物的总体数据,这是一个粗粒度表。

粒度选择的考虑因素

  • 查询性能: 细粒度数据可以提供更详细的查询,但可能导致数据库体积庞大,影响查询速度。粗粒度数据能快速查询,但可能无法提供详细的分析。
  • 存储空间: 细粒度需要更多的存储空间,因为它记录了更多的细节。
  • 数据分析的需求: 如果需要进行深入的数据分析,细粒度可能是更好的选择,这是大数业务中主要需要的。对于需要总览或趋势分析的情况,粗粒度可能更合适。

实际应用

在实际应用中,粒度的选择通常取决于业务需求和数据处理的目的。例如,如果你正在建立一个用于实时监控销售情况的系统,可能更偏向于选择粗粒度;而如果你的目标是进行深入的市场分析或客户行为分析,细粒度则可能更为合适。

总的来说,选择正确的数据粒度是确保数据库能够有效支持业务需求的关键。理解业务需求和预期的数据使用方式是做出这一决策的基础。

这篇关于数据库设计实践:粒度的理解与应用示例的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/446310

相关文章

Android Paging 分页加载库使用实践

《AndroidPaging分页加载库使用实践》AndroidPaging库是Jetpack组件的一部分,它提供了一套完整的解决方案来处理大型数据集的分页加载,本文将深入探讨Paging库... 目录前言一、Paging 库概述二、Paging 3 核心组件1. PagingSource2. Pager3.

深入浅出SpringBoot WebSocket构建实时应用全面指南

《深入浅出SpringBootWebSocket构建实时应用全面指南》WebSocket是一种在单个TCP连接上进行全双工通信的协议,这篇文章主要为大家详细介绍了SpringBoot如何集成WebS... 目录前言为什么需要 WebSocketWebSocket 是什么Spring Boot 如何简化 We

Java Stream流之GroupBy的用法及应用场景

《JavaStream流之GroupBy的用法及应用场景》本教程将详细介绍如何在Java中使用Stream流的groupby方法,包括基本用法和一些常见的实际应用场景,感兴趣的朋友一起看看吧... 目录Java Stream流之GroupBy的用法1. 前言2. 基础概念什么是 GroupBy?Stream

python中列表应用和扩展性实用详解

《python中列表应用和扩展性实用详解》文章介绍了Python列表的核心特性:有序数据集合,用[]定义,元素类型可不同,支持迭代、循环、切片,可执行增删改查、排序、推导式及嵌套操作,是常用的数据处理... 目录1、列表定义2、格式3、列表是可迭代对象4、列表的常见操作总结1、列表定义是处理一组有序项目的

Mysql中设计数据表的过程解析

《Mysql中设计数据表的过程解析》数据库约束通过NOTNULL、UNIQUE、DEFAULT、主键和外键等规则保障数据完整性,自动校验数据,减少人工错误,提升数据一致性和业务逻辑严谨性,本文介绍My... 目录1.引言2.NOT NULL——制定某列不可以存储NULL值2.UNIQUE——保证某一列的每一

SQL Server 中的 WITH (NOLOCK) 示例详解

《SQLServer中的WITH(NOLOCK)示例详解》SQLServer中的WITH(NOLOCK)是一种表提示,等同于READUNCOMMITTED隔离级别,允许查询在不获取共享锁的情... 目录SQL Server 中的 WITH (NOLOCK) 详解一、WITH (NOLOCK) 的本质二、工作

C#中的Converter的具体应用

《C#中的Converter的具体应用》C#中的Converter提供了一种灵活的类型转换机制,本文详细介绍了Converter的基本概念、使用场景,具有一定的参考价值,感兴趣的可以了解一下... 目录Converter的基本概念1. Converter委托2. 使用场景布尔型转换示例示例1:简单的字符串到

MySQL CTE (Common Table Expressions)示例全解析

《MySQLCTE(CommonTableExpressions)示例全解析》MySQL8.0引入CTE,支持递归查询,可创建临时命名结果集,提升复杂查询的可读性与维护性,适用于层次结构数据处... 目录基本语法CTE 主要特点非递归 CTE简单 CTE 示例多 CTE 示例递归 CTE基本递归 CTE 结

Spring AI使用tool Calling和MCP的示例详解

《SpringAI使用toolCalling和MCP的示例详解》SpringAI1.0.0.M6引入ToolCalling与MCP协议,提升AI与工具交互的扩展性与标准化,支持信息检索、行动执行等... 目录深入探索 Spring AI聊天接口示例Function CallingMCPSTDIOSSE结束语

Spring Boot Actuator应用监控与管理的详细步骤

《SpringBootActuator应用监控与管理的详细步骤》SpringBootActuator是SpringBoot的监控工具,提供健康检查、性能指标、日志管理等核心功能,支持自定义和扩展端... 目录一、 Spring Boot Actuator 概述二、 集成 Spring Boot Actuat