【pytorch】从yolo的make_grid理解torch.meshgrid、torch.stack

2023-12-02 15:15

本文主要是介绍【pytorch】从yolo的make_grid理解torch.meshgrid、torch.stack,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

    • 简述
    • 1、torch.meshgrid 创建行列坐标
    • 2、torch.stack 结合行列坐标
    • 3、通过view函数扩展维度

简述

yolo检测 make_grid创建网格代码如下,那么什么是torch.meshgrid?

def _make_grid(nx=20, ny=20):yv, xv = torch.meshgrid([torch.arange(ny), torch.arange(nx)])return torch.stack((xv, yv), 2).view((1, 1, ny, nx, 2)).float()

1、torch.meshgrid 创建行列坐标

torch.meshgrid 是 PyTorch 中的一个函数,这个函数通常用于创建坐标点的网格,以便进行一些网格上的操作,比如插值或者计算函数值。
例如,我们的目标是创建4行8列的坐标网格。

import torch
ny=4
nx=8
yv, xv = torch.meshgrid([torch.arange(ny), torch.arange(nx)])
print(yv)
print(xv)'''
tensor([[0, 0, 0, 0, 0, 0, 0, 0],[1, 1, 1, 1, 1, 1, 1, 1],[2, 2, 2, 2, 2, 2, 2, 2],[3, 3, 3, 3, 3, 3, 3, 3]])
tensor([[0, 1, 2, 3, 4, 5, 6, 7],[0, 1, 2, 3, 4, 5, 6, 7],[0, 1, 2, 3, 4, 5, 6, 7],[0, 1, 2, 3, 4, 5, 6, 7]])
'''

这个操作会形成以ny为行数,nx为列数的坐标网格,也就是4行8列。其中每行每列又按照torch.arange进行排序,也就是0-4行,0-8列。如下图所示。
![在这里插入图片描述](https://img-blog.csdnimg.cn/direct/ba16af5cd94243f79c1adfb2b282a2a1.png
可以看到yv实际上是一个纵坐标的网格,每个值都代表着自己所在的行,分别对应0-3行
xv代表着自己的列,也就是0-7列。在yolo检测的make_grid中,通常还有下个步骤,将两个值堆叠在一起。torch.stack。

2、torch.stack 结合行列坐标

torch.stack((xv, yv), 2)就是将上述行列坐标信息堆叠在第2个维度,这样子每个位置就有各自的行列坐标值。
(为了迎合yolo和w、h的顺序,x坐标堆叠在前面,y堆叠在后面)
在这里插入图片描述

tmp = torch.stack((xv, yv), 2)
print(tmp.shape)
print(tmp[1,2])
print(tmp[3,6])'''
torch.Size([4, 8, 2])
tensor([2, 1])
tensor([6, 3])
'''

可以看到w=1,h=2对应的值就是[2,1]也就是第2行,第1列。
w=3,h=6对应的值就是[6,3]也就是第6行,第3列。每一个wh都对应各自的行列坐标。也就是通过grid和stack函数,每个行列都有属于自己的值了!

3、通过view函数扩展维度

out=tmp.view((1, 1, ny, nx, 2)).float()

也就是将3维向量扩展成5维,就是为了后续检测操作,没有什么需要特别说的。

至此,整个make_grid函数解释完毕。这个函数作用就是生成ny行,nx列的网格用于检测时候的xy坐标确定

这篇关于【pytorch】从yolo的make_grid理解torch.meshgrid、torch.stack的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/445821

相关文章

PyTorch中的词嵌入层(nn.Embedding)详解与实战应用示例

《PyTorch中的词嵌入层(nn.Embedding)详解与实战应用示例》词嵌入解决NLP维度灾难,捕捉语义关系,PyTorch的nn.Embedding模块提供灵活实现,支持参数配置、预训练及变长... 目录一、词嵌入(Word Embedding)简介为什么需要词嵌入?二、PyTorch中的nn.Em

Java Spring的依赖注入理解及@Autowired用法示例详解

《JavaSpring的依赖注入理解及@Autowired用法示例详解》文章介绍了Spring依赖注入(DI)的概念、三种实现方式(构造器、Setter、字段注入),区分了@Autowired(注入... 目录一、什么是依赖注入(DI)?1. 定义2. 举个例子二、依赖注入的几种方式1. 构造器注入(Con

深入理解Go语言中二维切片的使用

《深入理解Go语言中二维切片的使用》本文深入讲解了Go语言中二维切片的概念与应用,用于表示矩阵、表格等二维数据结构,文中通过示例代码介绍的非常详细,需要的朋友们下面随着小编来一起学习学习吧... 目录引言二维切片的基本概念定义创建二维切片二维切片的操作访问元素修改元素遍历二维切片二维切片的动态调整追加行动态

Go语言中make和new的区别及说明

《Go语言中make和new的区别及说明》:本文主要介绍Go语言中make和new的区别及说明,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1 概述2 new 函数2.1 功能2.2 语法2.3 初始化案例3 make 函数3.1 功能3.2 语法3.3 初始化

从原理到实战深入理解Java 断言assert

《从原理到实战深入理解Java断言assert》本文深入解析Java断言机制,涵盖语法、工作原理、启用方式及与异常的区别,推荐用于开发阶段的条件检查与状态验证,并强调生产环境应使用参数验证工具类替代... 目录深入理解 Java 断言(assert):从原理到实战引言:为什么需要断言?一、断言基础1.1 语

Pytorch介绍与安装过程

《Pytorch介绍与安装过程》PyTorch因其直观的设计、卓越的灵活性以及强大的动态计算图功能,迅速在学术界和工业界获得了广泛认可,成为当前深度学习研究和开发的主流工具之一,本文给大家介绍Pyto... 目录1、Pytorch介绍1.1、核心理念1.2、核心组件与功能1.3、适用场景与优势总结1.4、优

conda安装GPU版pytorch默认却是cpu版本

《conda安装GPU版pytorch默认却是cpu版本》本文主要介绍了遇到Conda安装PyTorchGPU版本却默认安装CPU的问题,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的... 目录一、问题描述二、网上解决方案罗列【此节为反面方案罗列!!!】三、发现的根本原因[独家]3.1 p

PyTorch中cdist和sum函数使用示例详解

《PyTorch中cdist和sum函数使用示例详解》torch.cdist是PyTorch中用于计算**两个张量之间的成对距离(pairwisedistance)**的函数,常用于点云处理、图神经网... 目录基本语法输出示例1. 简单的 2D 欧几里得距离2. 批量形式(3D Tensor)3. 使用不

PyTorch高级特性与性能优化方式

《PyTorch高级特性与性能优化方式》:本文主要介绍PyTorch高级特性与性能优化方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、自动化机制1.自动微分机制2.动态计算图二、性能优化1.内存管理2.GPU加速3.多GPU训练三、分布式训练1.分布式数据

全解析CSS Grid 的 auto-fill 和 auto-fit 内容自适应

《全解析CSSGrid的auto-fill和auto-fit内容自适应》:本文主要介绍了全解析CSSGrid的auto-fill和auto-fit内容自适应的相关资料,详细内容请阅读本文,希望能对你有所帮助... css  Grid 的 auto-fill 和 auto-fit/* 父元素 */.gri