Python过滤掉特定区域内的矩形框

2023-12-02 13:52

本文主要是介绍Python过滤掉特定区域内的矩形框,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Python过滤掉特定区域内的矩形框

  • 前言
  • 前提条件
  • 相关介绍
  • 实验环境
  • 过滤掉特定区域内的矩形框
    • 方法一:直接法(for循环遍历)
      • 代码实现
      • 输出结果
    • 方法二:列表推导式
      • 代码实现
      • 输出结果

在这里插入图片描述

前言

  • 由于本人水平有限,难免出现错漏,敬请批评改正。
  • 更多精彩内容,可点击进入Python日常小操作专栏、OpenCV-Python小应用专栏、YOLO系列专栏、自然语言处理专栏或我的个人主页查看
  • YOLOv8 Ultralytics:使用Ultralytics框架训练RT-DETR实时目标检测模型
  • 基于DETR的人脸伪装检测
  • YOLOv7训练自己的数据集(口罩检测)
  • YOLOv8训练自己的数据集(足球检测)
  • YOLOv5:TensorRT加速YOLOv5模型推理
  • YOLOv5:IoU、GIoU、DIoU、CIoU、EIoU
  • 玩转Jetson Nano(五):TensorRT加速YOLOv5目标检测
  • YOLOv5:添加SE、CBAM、CoordAtt、ECA注意力机制
  • YOLOv5:yolov5s.yaml配置文件解读、增加小目标检测层
  • Python将COCO格式实例分割数据集转换为YOLO格式实例分割数据集
  • YOLOv5:使用7.0版本训练自己的实例分割模型(车辆、行人、路标、车道线等实例分割)
  • 使用Kaggle GPU资源免费体验Stable Diffusion开源项目

前提条件

  • 熟悉Python

相关介绍

  • Python是一种跨平台的计算机程序设计语言。是一个高层次的结合了解释性、编译性、互动性和面向对象的脚本语言。最初被设计用于编写自动化脚本(shell),随着版本的不断更新和语言新功能的添加,越多被用于独立的、大型项目的开发。
  • PyTorch 是一个深度学习框架,封装好了很多网络和深度学习相关的工具方便我们调用,而不用我们一个个去单独写了。它分为 CPU 和 GPU 版本,其他框架还有 TensorFlow、Caffe 等。PyTorch 是由 Facebook 人工智能研究院(FAIR)基于 Torch 推出的,它是一个基于 Python 的可续计算包,提供两个高级功能:1、具有强大的 GPU 加速的张量计算(如 NumPy);2、构建深度神经网络时的自动微分机制。
  • YOLOv5是一种单阶段目标检测算法,该算法在YOLOv4的基础上添加了一些新的改进思路,使其速度与精度都得到了极大的性能提升。它是一个在COCO数据集上预训练的物体检测架构和模型系列,代表了Ultralytics对未来视觉AI方法的开源研究,其中包含了经过数千小时的研究和开发而形成的经验教训和最佳实践。
  • Labelme是一款图像标注工具,由麻省理工(MIT)的计算机科学和人工智能实验室(CSAIL)研发。它是用Python和PyQT编写的,开源且免费。Labelme支持Windows、Linux和Mac等操作系统。
  • 这款工具提供了直观的图形界面,允许用户在图像上标注多种类型的目标,例如矩形框、多边形、线条等,甚至包括更复杂的形状。标注结果以JSON格式保存,便于后续处理和分析。这些标注信息可以用于目标检测、图像分割、图像分类等任务。
  • 总的来说,Labelme是一款强大且易用的图像标注工具,可以满足不同的图像处理需求。
  • Labelme标注json文件是一种用于存储标注信息的文件格式,它包含了以下几个主要的字段:
    • version: Labelme的版本号,例如"4.5.6"。
    • flags: 一些全局的标志,例如是否是分割任务,是否有多边形,等等。
    • shapes: 一个列表,每个元素是一个字典,表示一个标注对象。每个字典包含了以下几个字段:
      • label: 标注对象的类别名称,例如"dog"。
      • points: 一个列表,每个元素是一个坐标对,表示标注对象的边界点,例如[[10, 20], [30, 40]]。
      • group_id: 标注对象的分组编号,用于表示属于同一组的对象,例如1。
      • shape_type: 标注对象的形状类型,例如"polygon",“rectangle”,“circle”,等等。
      • flags: 一些针对该标注对象的标志,例如是否是难例,是否被遮挡,等等。
    • lineColor: 标注对象的边界线颜色,例如[0, 255, 0, 128]。
    • fillColor: 标注对象的填充颜色,例如[255, 0, 0, 128]。
    • imagePath: 图像文件的相对路径,例如"img_001.jpg"。
    • imageData: 图像文件的二进制数据,经过base64编码后的字符串,例如"iVBORw0KGgoAAAANSUhEUgAA…"。
    • imageHeight: 图像的高度,例如600。
    • imageWidth: 图像的宽度,例如800。

以下是一个Labelme标注json文件的示例:

{"version": "4.5.6","flags": {},"shapes": [{"label": "dog","points": [[121.0,233.0],[223.0,232.0],[246.0,334.0],[121.0,337.0]],"group_id": null,"shape_type": "polygon","flags": {}}],"lineColor": [0,255,0,128],"fillColor": [255,0,0,128],"imagePath": "img_001.jpg","imageData": "iVBORw0KGgoAAAANSUhEUgAA...","imageHeight": 600,"imageWidth": 800
}

实验环境

  • Python 3.x (面向对象的高级语言)

过滤掉特定区域内的矩形框

  • 背景:将预测出来的矩形框,过滤掉特定区域内(某些不需要的)的矩形框

在这里插入图片描述

方法一:直接法(for循环遍历)

代码实现

import cv2
import copy
import numpy as npdef is_rect_inside(rect, filtered_rects):  for filtered_rect in filtered_rects:  if (rect[1] >= filtered_rect[1] and rect[1] + rect[3] <= filtered_rect[1] + filtered_rect[3] and  rect[2] >= filtered_rect[2] and rect[2] + rect[4] <= filtered_rect[2] + filtered_rect[4]):  return True  return False  def filter_rect(rects_list,labels_list,scores_list,filtered_rects,pad_x=50,pad_y=50):'''合并重叠框 输入参数: rects_list :[[占位符,x,y,w,h,占位符],[占位符,x,y,w,h,占位符],...]labels_list :[0,1,...]scores_list :[0.8,0.15,...]filtered_rects: [[占位符,x,y,w,h,占位符],[占位符,x,y,w,h,占位符],...]返回:过滤后的rects_list : [[占位符,x,y,w,h,占位符],[占位符,x,y,w,h,占位符],...]过滤后的labels_list : [0,1,...]过滤后的scores_list : [0.8,0.15,...]'''new_rects_list = []new_labels_list = []new_scores_list = []for index,rect in enumerate(rects_list):if not is_rect_inside(rect, filtered_rects):new_rects_list.append(rect)new_labels_list.append(labels_list[index])new_scores_list.append(scores_list[index])return new_rects_list,new_labels_list,new_scores_listif __name__=="__main__":# 特定区域(蓝色区域)filtered_rects = [[2.0,390,390,60,60,0.0],[2.0,90,90,250,250,0.0]]# 原始矩形框rects_list = [[2.0,10,10,15,15,0.0],[2.0,20,20,10,10,0.0],[2.0,100,100,150,150,0.0],  [2.0,200,200,100,100,0.0],[2.0,400,400,15,15,0.0],[2.0,420,420,10,10,0.0]] # [占位符,x,y,w,h,占位符]# print("原始的矩形框:",rects_list)labels_list = [0,1,2,3,2,1]scores_list = [0.8,0.9,0.5,0.6,0.7,0.3]img = np.ones([512, 512, 3], np.uint8)for _,x,y,w,h,_ in rects_list:img = cv2.rectangle(img, (x,y), (x+w,y+h), (0, 255, 0), 2)for _,x,y,w,h,_ in filtered_rects:img = cv2.rectangle(img, (x,y), (x+w,y+h), (255, 0, 0), 2)cv2.imshow('origin', img)# cv2.imwrite('origin.jpg', img)new_rects_list,new_labels_list,new_scores_list = filter_rect(rects_list,labels_list,scores_list,filtered_rects,pad_x=50,pad_y=50)# print("过滤后的矩形框,类别,置信度:",new_rects_list,new_labels_list,new_scores_list)img = np.ones([512, 512, 3], np.uint8) for _,x,y,w,h,_ in new_rects_list:img = cv2.rectangle(img, (x,y), (x+w,y+h), (0, 0, 255), 2)for _,x,y,w,h,_ in filtered_rects:img = cv2.rectangle(img, (x,y), (x+w,y+h), (255, 0, 0), 2)cv2.imshow('filtered', img)# cv2.imwrite('filtered.jpg', img)cv2.waitKey(0)cv2.destroyAllWindows()

输出结果

在这里插入图片描述

方法二:列表推导式

代码实现

import cv2
import copy
import numpy as npdef is_rect_inside(rect, filtered_rects):  for filtered_rect in filtered_rects:  if (rect[1] >= filtered_rect[1] and rect[1] + rect[3] <= filtered_rect[1] + filtered_rect[3] and  rect[2] >= filtered_rect[2] and rect[2] + rect[4] <= filtered_rect[2] + filtered_rect[4]):  return True  return False  if __name__=="__main__":# 特定区域(蓝色区域)filtered_rects = [[2.0,390,390,60,60,0.0],[2.0,90,90,250,250,0.0]]# 原始矩形框rects_list = [[2.0,10,10,15,15,0.0],[2.0,20,20,10,10,0.0],[2.0,100,100,150,150,0.0],  [2.0,200,200,100,100,0.0],[2.0,400,400,15,15,0.0],[2.0,420,420,10,10,0.0]] # [占位符,x,y,w,h,占位符] # print("原始的矩形框:",rects_list)labels_list = [0,1,2,3,2,1]scores_list = [0.8,0.9,0.5,0.6,0.7,0.3] img = np.ones([512, 512, 3], np.uint8)for _,x,y,w,h,_ in rects_list:img = cv2.rectangle(img, (x,y), (x+w,y+h), (0, 255, 0), 2)for _,x,y,w,h,_ in filtered_rects:img = cv2.rectangle(img, (x,y), (x+w,y+h), (255, 0, 0), 2)cv2.imshow('origin', img)# cv2.imwrite('origin.jpg', img)print("原始的矩形框:", rects_list)  filtered_rects_list = [rect for rect in rects_list if not is_rect_inside(rect, filtered_rects)]filtered_labels_list = [labels_list[index] for index,rect in enumerate(rects_list) if not is_rect_inside(rect, filtered_rects)]filtered_scores_list = [scores_list[index] for index,rect in enumerate(rects_list) if not is_rect_inside(rect, filtered_rects)]print("过滤后的矩形框,类别,置信度:", filtered_rects_list,filtered_labels_list,filtered_scores_list)img = np.ones([512, 512, 3], np.uint8) for _,x,y,w,h,_ in filtered_rects_list:img = cv2.rectangle(img, (x,y), (x+w,y+h), (0, 0, 255), 2)for _,x,y,w,h,_ in filtered_rects:img = cv2.rectangle(img, (x,y), (x+w,y+h), (255, 0, 0), 2)cv2.imshow('filtered', img)# cv2.imwrite('filtered.jpg', img)cv2.waitKey(0)cv2.destroyAllWindows()

输出结果

在这里插入图片描述

  • 由于本人水平有限,难免出现错漏,敬请批评改正。
  • 更多精彩内容,可点击进入Python日常小操作专栏、OpenCV-Python小应用专栏、YOLO系列专栏、自然语言处理专栏或我的个人主页查看
  • YOLOv8 Ultralytics:使用Ultralytics框架训练RT-DETR实时目标检测模型
  • 基于DETR的人脸伪装检测
  • YOLOv7训练自己的数据集(口罩检测)
  • YOLOv8训练自己的数据集(足球检测)
  • YOLOv5:TensorRT加速YOLOv5模型推理
  • YOLOv5:IoU、GIoU、DIoU、CIoU、EIoU
  • 玩转Jetson Nano(五):TensorRT加速YOLOv5目标检测
  • YOLOv5:添加SE、CBAM、CoordAtt、ECA注意力机制
  • YOLOv5:yolov5s.yaml配置文件解读、增加小目标检测层
  • Python将COCO格式实例分割数据集转换为YOLO格式实例分割数据集
  • YOLOv5:使用7.0版本训练自己的实例分割模型(车辆、行人、路标、车道线等实例分割)
  • 使用Kaggle GPU资源免费体验Stable Diffusion开源项目

这篇关于Python过滤掉特定区域内的矩形框的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/445587

相关文章

Python办公自动化实战之打造智能邮件发送工具

《Python办公自动化实战之打造智能邮件发送工具》在数字化办公场景中,邮件自动化是提升工作效率的关键技能,本文将演示如何使用Python的smtplib和email库构建一个支持图文混排,多附件,多... 目录前言一、基础配置:搭建邮件发送框架1.1 邮箱服务准备1.2 核心库导入1.3 基础发送函数二、

Python包管理工具pip的升级指南

《Python包管理工具pip的升级指南》本文全面探讨Python包管理工具pip的升级策略,从基础升级方法到高级技巧,涵盖不同操作系统环境下的最佳实践,我们将深入分析pip的工作原理,介绍多种升级方... 目录1. 背景介绍1.1 目的和范围1.2 预期读者1.3 文档结构概述1.4 术语表1.4.1 核

基于Python实现一个图片拆分工具

《基于Python实现一个图片拆分工具》这篇文章主要为大家详细介绍了如何基于Python实现一个图片拆分工具,可以根据需要的行数和列数进行拆分,感兴趣的小伙伴可以跟随小编一起学习一下... 简单介绍先自己选择输入的图片,默认是输出到项目文件夹中,可以自己选择其他的文件夹,选择需要拆分的行数和列数,可以通过

Python中反转字符串的常见方法小结

《Python中反转字符串的常见方法小结》在Python中,字符串对象没有内置的反转方法,然而,在实际开发中,我们经常会遇到需要反转字符串的场景,比如处理回文字符串、文本加密等,因此,掌握如何在Pyt... 目录python中反转字符串的方法技术背景实现步骤1. 使用切片2. 使用 reversed() 函

Python中将嵌套列表扁平化的多种实现方法

《Python中将嵌套列表扁平化的多种实现方法》在Python编程中,我们常常会遇到需要将嵌套列表(即列表中包含列表)转换为一个一维的扁平列表的需求,本文将给大家介绍了多种实现这一目标的方法,需要的朋... 目录python中将嵌套列表扁平化的方法技术背景实现步骤1. 使用嵌套列表推导式2. 使用itert

使用Docker构建Python Flask程序的详细教程

《使用Docker构建PythonFlask程序的详细教程》在当今的软件开发领域,容器化技术正变得越来越流行,而Docker无疑是其中的佼佼者,本文我们就来聊聊如何使用Docker构建一个简单的Py... 目录引言一、准备工作二、创建 Flask 应用程序三、创建 dockerfile四、构建 Docker

Python使用vllm处理多模态数据的预处理技巧

《Python使用vllm处理多模态数据的预处理技巧》本文深入探讨了在Python环境下使用vLLM处理多模态数据的预处理技巧,我们将从基础概念出发,详细讲解文本、图像、音频等多模态数据的预处理方法,... 目录1. 背景介绍1.1 目的和范围1.2 预期读者1.3 文档结构概述1.4 术语表1.4.1 核

Python使用pip工具实现包自动更新的多种方法

《Python使用pip工具实现包自动更新的多种方法》本文深入探讨了使用Python的pip工具实现包自动更新的各种方法和技术,我们将从基础概念开始,逐步介绍手动更新方法、自动化脚本编写、结合CI/C... 目录1. 背景介绍1.1 目的和范围1.2 预期读者1.3 文档结构概述1.4 术语表1.4.1 核

Conda与Python venv虚拟环境的区别与使用方法详解

《Conda与Pythonvenv虚拟环境的区别与使用方法详解》随着Python社区的成长,虚拟环境的概念和技术也在不断发展,:本文主要介绍Conda与Pythonvenv虚拟环境的区别与使用... 目录前言一、Conda 与 python venv 的核心区别1. Conda 的特点2. Python v

Python使用python-can实现合并BLF文件

《Python使用python-can实现合并BLF文件》python-can库是Python生态中专注于CAN总线通信与数据处理的强大工具,本文将使用python-can为BLF文件合并提供高效灵活... 目录一、python-can 库:CAN 数据处理的利器二、BLF 文件合并核心代码解析1. 基础合