Hadoop2.6.5单机安装

2023-12-02 09:08
文章标签 安装 单机 hadoop2.6

本文主要是介绍Hadoop2.6.5单机安装,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

 

 

Hadoop2.6.5单机安装

 

 

JDK的安装

 

配置JDK环境变量

 

[root@spark1 soft]# vim /etc/profile
#JDK环境变量配置
#export JAVA_HOME=/application/jdk1.7.0_79
export JAVA_HOME=/application/jdk1.8.0_172
export JRE_HOME=$JAVA_HOME/jre
export CLASSPATH=.:$JAVA_HOME/lib/dt.jar:$JAVA_HOME/lib/tools.jar:$JRE_HOME/lib/rt.jar
export PATH=$PATH:$JAVA_HOME/bin:$JRE_HOME/bin

环境变量生效

[root@spark1 soft]# source /etc/profile[root@spark1 soft]# java -version
openjdk version "1.8.0_121"
OpenJDK Runtime Environment (build 1.8.0_121-b13)
OpenJDK 64-Bit Server VM (build 25.121-b13, mixed mode)
[root@spark1 soft]# 

 

配置SSH无密码登陆

$ ssh-keygen -t dsa -P '' -f ~/.ssh/id_dsa
$ cat ~/.ssh/id_dsa.pub >> ~/.ssh/authorized_keys

验证ssh,# ssh localhost 
不需要输入密码即可登录。

 

 

 

Hadoop安装

 

下载

下载地址:

https://www.apache.org/dyn/closer.cgi/hadoop/common/

https://mirrors.tuna.tsinghua.edu.cn/apache/hadoop/common/hadoop-2.6.5/hadoop-2.6.5.tar.gz

 

解压安装 

[root@spark1 soft]# tar -zxvf hadoop-2.6.5.tar.gz -C /application/

 

创建hadoop安装所需目录

在/root /hadoop/目录下,建立tmp、hdfs/name、hdfs/data目录,执行如下命令 

#mkdir /root/hadoop/tmp 
#mkdir /root/hadoop/hdfs 
#mkdir /root/hadoop/hdfs/data 
#mkdir /root/hadoop/hdfs/name

 

设置Hadoop环境变量

#Hadoop环境变量配置
export HADOOP_HOME=/application/hadoop-2.6.5
export PATH=$PATH:$HADOOP_HOME/bin:$HADOOP_HOME/sbin
[root@spark1 soft]# source /etc/profile

 

 

Hadoop配置 

进入$HADOOP_HOME/etc/hadoop目录,配置 hadoop-env.sh等。涉及的配置文件如下: 
1)hadoop-2.6.5/etc/hadoop/hadoop-env.sh 
2)hadoop-2.6.5/etc/hadoop/yarn-env.sh 
3)hadoop-2.6.5/etc/hadoop/core-site.xml 
4)hadoop-2.6.5/etc/hadoop/hdfs-site.xml 
5)hadoop-2.6.5/etc/hadoop/mapred-site.xml 
6)hadoop-2.6.5/etc/hadoop/yarn-site.xml

 

1)配置hadoop-env.sh

# The java implementation to use.
#export JAVA_HOME=${JAVA_HOME}
export JAVA_HOME=/application/jdk1.8.0_172

 

2)配置yarn-env.sh

# some Java parameters
# export JAVA_HOME=/home/y/libexec/jdk1.6.0/
export JAVA_HOME=/application/jdk1.8.0_172

 

 

3)配置core-site.xml 


添加如下配置:

[root@spark1 hadoop]# cat core-site.xml
<?xml version="1.0" encoding="UTF-8"?>
<?xml-stylesheet type="text/xsl" href="configuration.xsl"?>
<configuration><property><name>fs.default.name</name><value>hdfs://spark1:9000</value><description>HDFS的URI,文件系统://namenode标识:端口号</description>
</property><property><name>hadoop.tmp.dir</name><value>/root/hadoop/tmp</value><description>namenode上本地的hadoop临时文件夹</description>
</property>
</configuration>[root@spark1 hadoop]# 

 

4)配置hdfs-site.xml 

[root@spark1 hadoop]# cat hdfs-site.xml
<?xml version="1.0" encoding="UTF-8"?>
<?xml-stylesheet type="text/xsl" href="configuration.xsl"?><configuration>
<!--hdfs-site.xml-->
<property><name>dfs.name.dir</name><value>/root/hadoop/hdfs/name</value><description>namenode上存储hdfs名字空间元数据 </description> 
</property><property><name>dfs.data.dir</name><value>/root/hadoop/hdfs/data</value><description>datanode上数据块的物理存储位置</description>
</property><property><name>dfs.replication</name><value>1</value><description>副本个数,配置默认是3,应小于datanode机器数量</description>
</property>
</configuration>
[root@spark1 hadoop]# 

 

5)配置mapred-site.xml 

[root@spark1 hadoop]# cat mapred-site.xml
<?xml version="1.0"?>
<?xml-stylesheet type="text/xsl" href="configuration.xsl"?>
<configuration>
<property><name>mapreduce.framework.name</name><value>yarn</value>
</property>
</configuration>
[root@spark1 hadoop]# 

 

6)配置yarn-site.xml 


[root@spark1 hadoop]# cat yarn-site.xml
<?xml version="1.0"?>
<configuration><!-- Site specific YARN configuration properties -->
<property><name>yarn.nodemanager.aux-services</name><value>mapreduce_shuffle</value>
</property>
<property><name>yarn.resourcemanager.webapp.address</name><value>${yarn.resourcemanager.hostname}:8099</value>
</property>
</configuration>
[root@spark1 hadoop]# 

说明:

    1)默认端口是8088;

    2)这里我设置了yarn.resourcemanager.webapp.address为:${yarn.resourcemanager.hostname}:8099;

 

 

Hadoop启动 

 

1)格式化namenode

hadoop namenode -format

 

2)启动NameNode 和 DataNode 守护进程

start-dfs.sh

 

3)启动ResourceManager 和 NodeManager 守护进程

start-yarn.sh

 

启动验证 

1)执行jps命令,有如下进程,说明Hadoop正常启动

[root@spark1 soft]# jps
5649 DataNode
6631 ResourceManager
5815 SecondaryNameNode
5527 NameNode
6728 NodeManager
7981 Jps
[root@spark1 soft]#

2)访问hdfs

http://192.168.2.191:50070

 

3)在浏览器中输入:http://192.168.2.191:8099/cluster 即可看到YARN的ResourceManager的界面。

注意:默认端口是8088,这里我设置了yarn.resourcemanager.webapp.address为:${yarn.resourcemanager.hostname}:8099

 

运行Hadoop的一个例子

[root@spark1 hadoop]# hadoop jar /application/hadoop-2.6.5/share/hadoop/mapreduce/hadoop-mapreduce-examples-2.6.5.jar pi 2 100
Number of Maps  = 2
Samples per Map = 100
19/04/13 13:46:49 WARN util.NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
Wrote input for Map #0
Wrote input for Map #1
Starting Job
19/04/13 13:46:51 INFO client.RMProxy: Connecting to ResourceManager at /0.0.0.0:8032
19/04/13 13:46:52 INFO input.FileInputFormat: Total input paths to process : 2
19/04/13 13:46:52 INFO mapreduce.JobSubmitter: number of splits:2
19/04/13 13:46:52 INFO mapreduce.JobSubmitter: Submitting tokens for job: job_1555134174372_0001
19/04/13 13:46:53 INFO impl.YarnClientImpl: Submitted application application_1555134174372_0001
19/04/13 13:46:53 INFO mapreduce.Job: The url to track the job: http://spark1:8099/proxy/application_1555134174372_0001/
19/04/13 13:46:53 INFO mapreduce.Job: Running job: job_1555134174372_0001
19/04/13 13:47:00 INFO mapreduce.Job: Job job_1555134174372_0001 running in uber mode : false
19/04/13 13:47:00 INFO mapreduce.Job:  map 0% reduce 0%
19/04/13 13:47:14 INFO mapreduce.Job:  map 100% reduce 0%
19/04/13 13:47:19 INFO mapreduce.Job:  map 100% reduce 100%
19/04/13 13:47:19 INFO mapreduce.Job: Job job_1555134174372_0001 completed successfully
19/04/13 13:47:19 INFO mapreduce.Job: Counters: 49File System CountersFILE: Number of bytes read=50FILE: Number of bytes written=322803FILE: Number of read operations=0FILE: Number of large read operations=0FILE: Number of write operations=0HDFS: Number of bytes read=522HDFS: Number of bytes written=215HDFS: Number of read operations=11HDFS: Number of large read operations=0HDFS: Number of write operations=3Job Counters Launched map tasks=2Launched reduce tasks=1Data-local map tasks=2Total time spent by all maps in occupied slots (ms)=23209Total time spent by all reduces in occupied slots (ms)=2996Total time spent by all map tasks (ms)=23209Total time spent by all reduce tasks (ms)=2996Total vcore-milliseconds taken by all map tasks=23209Total vcore-milliseconds taken by all reduce tasks=2996Total megabyte-milliseconds taken by all map tasks=23766016Total megabyte-milliseconds taken by all reduce tasks=3067904Map-Reduce FrameworkMap input records=2Map output records=4Map output bytes=36Map output materialized bytes=56Input split bytes=286Combine input records=0Combine output records=0Reduce input groups=2Reduce shuffle bytes=56Reduce input records=4Reduce output records=0Spilled Records=8Shuffled Maps =2Failed Shuffles=0Merged Map outputs=2GC time elapsed (ms)=2514CPU time spent (ms)=12980Physical memory (bytes) snapshot=697511936Virtual memory (bytes) snapshot=6333603840Total committed heap usage (bytes)=499646464Shuffle ErrorsBAD_ID=0CONNECTION=0IO_ERROR=0WRONG_LENGTH=0WRONG_MAP=0WRONG_REDUCE=0File Input Format Counters Bytes Read=236File Output Format Counters Bytes Written=97
Job Finished in 28.254 seconds
Estimated value of Pi is 3.12000000000000000000
[root@spark1 hadoop]# 

 

 


==============================
QQ群:143522604
群里有相关资源
欢迎和大家一起学习、交流、提升!
==============================

这篇关于Hadoop2.6.5单机安装的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/444727

相关文章

RabbitMQ 延时队列插件安装与使用示例详解(基于 Delayed Message Plugin)

《RabbitMQ延时队列插件安装与使用示例详解(基于DelayedMessagePlugin)》本文详解RabbitMQ通过安装rabbitmq_delayed_message_exchan... 目录 一、什么是 RabbitMQ 延时队列? 二、安装前准备✅ RabbitMQ 环境要求 三、安装延时队

linux系统上安装JDK8全过程

《linux系统上安装JDK8全过程》文章介绍安装JDK的必要性及Linux下JDK8的安装步骤,包括卸载旧版本、下载解压、配置环境变量等,强调开发需JDK,运行可选JRE,现JDK已集成JRE... 目录为什么要安装jdk?1.查看linux系统是否有自带的jdk:2.下载jdk压缩包2.解压3.配置环境

Python库 Django 的简介、安装、用法入门教程

《Python库Django的简介、安装、用法入门教程》Django是Python最流行的Web框架之一,它帮助开发者快速、高效地构建功能强大的Web应用程序,接下来我们将从简介、安装到用法详解,... 目录一、Django 简介 二、Django 的安装教程 1. 创建虚拟环境2. 安装Django三、创

linux安装、更新、卸载anaconda实践

《linux安装、更新、卸载anaconda实践》Anaconda是基于conda的科学计算环境,集成1400+包及依赖,安装需下载脚本、接受协议、设置路径、配置环境变量,更新与卸载通过conda命令... 目录随意找一个目录下载安装脚本检查许可证协议,ENTER就可以安装完毕之后激活anaconda安装更

Jenkins的安装与简单配置过程

《Jenkins的安装与简单配置过程》本文简述Jenkins在CentOS7.3上安装流程,包括Java环境配置、RPM包安装、修改JENKINS_HOME路径及权限、启动服务、插件安装与系统管理设置... 目录www.chinasem.cnJenkins安装访问并配置JenkinsJenkins配置邮件通知

Win10安装Maven与环境变量配置过程

《Win10安装Maven与环境变量配置过程》本文介绍Maven的安装与配置方法,涵盖下载、环境变量设置、本地仓库及镜像配置,指导如何在IDEA中正确配置Maven,适用于Java及其他语言项目的构建... 目录Maven 是什么?一、下载二、安装三、配置环境四、验证测试五、配置本地仓库六、配置国内镜像地址

Python安装Pandas库的两种方法

《Python安装Pandas库的两种方法》本文介绍了三种安装PythonPandas库的方法,通过cmd命令行安装并解决版本冲突,手动下载whl文件安装,更换国内镜像源加速下载,最后建议用pipli... 目录方法一:cmd命令行执行pip install pandas方法二:找到pandas下载库,然后

Linux系统中查询JDK安装目录的几种常用方法

《Linux系统中查询JDK安装目录的几种常用方法》:本文主要介绍Linux系统中查询JDK安装目录的几种常用方法,方法分别是通过update-alternatives、Java命令、环境变量及目... 目录方法 1:通过update-alternatives查询(推荐)方法 2:检查所有已安装的 JDK方

SQL Server安装时候没有中文选项的解决方法

《SQLServer安装时候没有中文选项的解决方法》用户安装SQLServer时界面全英文,无中文选项,通过修改安装设置中的国家或地区为中文中国,重启安装程序后界面恢复中文,解决了问题,对SQLSe... 你是不是在安装SQL Server时候发现安装界面和别人不同,并且无论如何都没有中文选项?这个问题也

2025版mysql8.0.41 winx64 手动安装详细教程

《2025版mysql8.0.41winx64手动安装详细教程》本文指导Windows系统下MySQL安装配置,包含解压、设置环境变量、my.ini配置、初始化密码获取、服务安装与手动启动等步骤,... 目录一、下载安装包二、配置环境变量三、安装配置四、启动 mysql 服务,修改密码一、下载安装包安装地