Hadoop2.6.5单机安装

2023-12-02 09:08
文章标签 安装 单机 hadoop2.6

本文主要是介绍Hadoop2.6.5单机安装,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

 

 

Hadoop2.6.5单机安装

 

 

JDK的安装

 

配置JDK环境变量

 

[root@spark1 soft]# vim /etc/profile
#JDK环境变量配置
#export JAVA_HOME=/application/jdk1.7.0_79
export JAVA_HOME=/application/jdk1.8.0_172
export JRE_HOME=$JAVA_HOME/jre
export CLASSPATH=.:$JAVA_HOME/lib/dt.jar:$JAVA_HOME/lib/tools.jar:$JRE_HOME/lib/rt.jar
export PATH=$PATH:$JAVA_HOME/bin:$JRE_HOME/bin

环境变量生效

[root@spark1 soft]# source /etc/profile[root@spark1 soft]# java -version
openjdk version "1.8.0_121"
OpenJDK Runtime Environment (build 1.8.0_121-b13)
OpenJDK 64-Bit Server VM (build 25.121-b13, mixed mode)
[root@spark1 soft]# 

 

配置SSH无密码登陆

$ ssh-keygen -t dsa -P '' -f ~/.ssh/id_dsa
$ cat ~/.ssh/id_dsa.pub >> ~/.ssh/authorized_keys

验证ssh,# ssh localhost 
不需要输入密码即可登录。

 

 

 

Hadoop安装

 

下载

下载地址:

https://www.apache.org/dyn/closer.cgi/hadoop/common/

https://mirrors.tuna.tsinghua.edu.cn/apache/hadoop/common/hadoop-2.6.5/hadoop-2.6.5.tar.gz

 

解压安装 

[root@spark1 soft]# tar -zxvf hadoop-2.6.5.tar.gz -C /application/

 

创建hadoop安装所需目录

在/root /hadoop/目录下,建立tmp、hdfs/name、hdfs/data目录,执行如下命令 

#mkdir /root/hadoop/tmp 
#mkdir /root/hadoop/hdfs 
#mkdir /root/hadoop/hdfs/data 
#mkdir /root/hadoop/hdfs/name

 

设置Hadoop环境变量

#Hadoop环境变量配置
export HADOOP_HOME=/application/hadoop-2.6.5
export PATH=$PATH:$HADOOP_HOME/bin:$HADOOP_HOME/sbin
[root@spark1 soft]# source /etc/profile

 

 

Hadoop配置 

进入$HADOOP_HOME/etc/hadoop目录,配置 hadoop-env.sh等。涉及的配置文件如下: 
1)hadoop-2.6.5/etc/hadoop/hadoop-env.sh 
2)hadoop-2.6.5/etc/hadoop/yarn-env.sh 
3)hadoop-2.6.5/etc/hadoop/core-site.xml 
4)hadoop-2.6.5/etc/hadoop/hdfs-site.xml 
5)hadoop-2.6.5/etc/hadoop/mapred-site.xml 
6)hadoop-2.6.5/etc/hadoop/yarn-site.xml

 

1)配置hadoop-env.sh

# The java implementation to use.
#export JAVA_HOME=${JAVA_HOME}
export JAVA_HOME=/application/jdk1.8.0_172

 

2)配置yarn-env.sh

# some Java parameters
# export JAVA_HOME=/home/y/libexec/jdk1.6.0/
export JAVA_HOME=/application/jdk1.8.0_172

 

 

3)配置core-site.xml 


添加如下配置:

[root@spark1 hadoop]# cat core-site.xml
<?xml version="1.0" encoding="UTF-8"?>
<?xml-stylesheet type="text/xsl" href="configuration.xsl"?>
<configuration><property><name>fs.default.name</name><value>hdfs://spark1:9000</value><description>HDFS的URI,文件系统://namenode标识:端口号</description>
</property><property><name>hadoop.tmp.dir</name><value>/root/hadoop/tmp</value><description>namenode上本地的hadoop临时文件夹</description>
</property>
</configuration>[root@spark1 hadoop]# 

 

4)配置hdfs-site.xml 

[root@spark1 hadoop]# cat hdfs-site.xml
<?xml version="1.0" encoding="UTF-8"?>
<?xml-stylesheet type="text/xsl" href="configuration.xsl"?><configuration>
<!--hdfs-site.xml-->
<property><name>dfs.name.dir</name><value>/root/hadoop/hdfs/name</value><description>namenode上存储hdfs名字空间元数据 </description> 
</property><property><name>dfs.data.dir</name><value>/root/hadoop/hdfs/data</value><description>datanode上数据块的物理存储位置</description>
</property><property><name>dfs.replication</name><value>1</value><description>副本个数,配置默认是3,应小于datanode机器数量</description>
</property>
</configuration>
[root@spark1 hadoop]# 

 

5)配置mapred-site.xml 

[root@spark1 hadoop]# cat mapred-site.xml
<?xml version="1.0"?>
<?xml-stylesheet type="text/xsl" href="configuration.xsl"?>
<configuration>
<property><name>mapreduce.framework.name</name><value>yarn</value>
</property>
</configuration>
[root@spark1 hadoop]# 

 

6)配置yarn-site.xml 


[root@spark1 hadoop]# cat yarn-site.xml
<?xml version="1.0"?>
<configuration><!-- Site specific YARN configuration properties -->
<property><name>yarn.nodemanager.aux-services</name><value>mapreduce_shuffle</value>
</property>
<property><name>yarn.resourcemanager.webapp.address</name><value>${yarn.resourcemanager.hostname}:8099</value>
</property>
</configuration>
[root@spark1 hadoop]# 

说明:

    1)默认端口是8088;

    2)这里我设置了yarn.resourcemanager.webapp.address为:${yarn.resourcemanager.hostname}:8099;

 

 

Hadoop启动 

 

1)格式化namenode

hadoop namenode -format

 

2)启动NameNode 和 DataNode 守护进程

start-dfs.sh

 

3)启动ResourceManager 和 NodeManager 守护进程

start-yarn.sh

 

启动验证 

1)执行jps命令,有如下进程,说明Hadoop正常启动

[root@spark1 soft]# jps
5649 DataNode
6631 ResourceManager
5815 SecondaryNameNode
5527 NameNode
6728 NodeManager
7981 Jps
[root@spark1 soft]#

2)访问hdfs

http://192.168.2.191:50070

 

3)在浏览器中输入:http://192.168.2.191:8099/cluster 即可看到YARN的ResourceManager的界面。

注意:默认端口是8088,这里我设置了yarn.resourcemanager.webapp.address为:${yarn.resourcemanager.hostname}:8099

 

运行Hadoop的一个例子

[root@spark1 hadoop]# hadoop jar /application/hadoop-2.6.5/share/hadoop/mapreduce/hadoop-mapreduce-examples-2.6.5.jar pi 2 100
Number of Maps  = 2
Samples per Map = 100
19/04/13 13:46:49 WARN util.NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
Wrote input for Map #0
Wrote input for Map #1
Starting Job
19/04/13 13:46:51 INFO client.RMProxy: Connecting to ResourceManager at /0.0.0.0:8032
19/04/13 13:46:52 INFO input.FileInputFormat: Total input paths to process : 2
19/04/13 13:46:52 INFO mapreduce.JobSubmitter: number of splits:2
19/04/13 13:46:52 INFO mapreduce.JobSubmitter: Submitting tokens for job: job_1555134174372_0001
19/04/13 13:46:53 INFO impl.YarnClientImpl: Submitted application application_1555134174372_0001
19/04/13 13:46:53 INFO mapreduce.Job: The url to track the job: http://spark1:8099/proxy/application_1555134174372_0001/
19/04/13 13:46:53 INFO mapreduce.Job: Running job: job_1555134174372_0001
19/04/13 13:47:00 INFO mapreduce.Job: Job job_1555134174372_0001 running in uber mode : false
19/04/13 13:47:00 INFO mapreduce.Job:  map 0% reduce 0%
19/04/13 13:47:14 INFO mapreduce.Job:  map 100% reduce 0%
19/04/13 13:47:19 INFO mapreduce.Job:  map 100% reduce 100%
19/04/13 13:47:19 INFO mapreduce.Job: Job job_1555134174372_0001 completed successfully
19/04/13 13:47:19 INFO mapreduce.Job: Counters: 49File System CountersFILE: Number of bytes read=50FILE: Number of bytes written=322803FILE: Number of read operations=0FILE: Number of large read operations=0FILE: Number of write operations=0HDFS: Number of bytes read=522HDFS: Number of bytes written=215HDFS: Number of read operations=11HDFS: Number of large read operations=0HDFS: Number of write operations=3Job Counters Launched map tasks=2Launched reduce tasks=1Data-local map tasks=2Total time spent by all maps in occupied slots (ms)=23209Total time spent by all reduces in occupied slots (ms)=2996Total time spent by all map tasks (ms)=23209Total time spent by all reduce tasks (ms)=2996Total vcore-milliseconds taken by all map tasks=23209Total vcore-milliseconds taken by all reduce tasks=2996Total megabyte-milliseconds taken by all map tasks=23766016Total megabyte-milliseconds taken by all reduce tasks=3067904Map-Reduce FrameworkMap input records=2Map output records=4Map output bytes=36Map output materialized bytes=56Input split bytes=286Combine input records=0Combine output records=0Reduce input groups=2Reduce shuffle bytes=56Reduce input records=4Reduce output records=0Spilled Records=8Shuffled Maps =2Failed Shuffles=0Merged Map outputs=2GC time elapsed (ms)=2514CPU time spent (ms)=12980Physical memory (bytes) snapshot=697511936Virtual memory (bytes) snapshot=6333603840Total committed heap usage (bytes)=499646464Shuffle ErrorsBAD_ID=0CONNECTION=0IO_ERROR=0WRONG_LENGTH=0WRONG_MAP=0WRONG_REDUCE=0File Input Format Counters Bytes Read=236File Output Format Counters Bytes Written=97
Job Finished in 28.254 seconds
Estimated value of Pi is 3.12000000000000000000
[root@spark1 hadoop]# 

 

 


==============================
QQ群:143522604
群里有相关资源
欢迎和大家一起学习、交流、提升!
==============================

这篇关于Hadoop2.6.5单机安装的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/444727

相关文章

Python中win32包的安装及常见用途介绍

《Python中win32包的安装及常见用途介绍》在Windows环境下,PythonWin32模块通常随Python安装包一起安装,:本文主要介绍Python中win32包的安装及常见用途的相关... 目录前言主要组件安装方法常见用途1. 操作Windows注册表2. 操作Windows服务3. 窗口操作

gitlab安装及邮箱配置和常用使用方式

《gitlab安装及邮箱配置和常用使用方式》:本文主要介绍gitlab安装及邮箱配置和常用使用方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1.安装GitLab2.配置GitLab邮件服务3.GitLab的账号注册邮箱验证及其分组4.gitlab分支和标签的

MySQL MCP 服务器安装配置最佳实践

《MySQLMCP服务器安装配置最佳实践》本文介绍MySQLMCP服务器的安装配置方法,本文结合实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下... 目录mysql MCP 服务器安装配置指南简介功能特点安装方法数据库配置使用MCP Inspector进行调试开发指

在Windows上使用qemu安装ubuntu24.04服务器的详细指南

《在Windows上使用qemu安装ubuntu24.04服务器的详细指南》本文介绍了在Windows上使用QEMU安装Ubuntu24.04的全流程:安装QEMU、准备ISO镜像、创建虚拟磁盘、配置... 目录1. 安装QEMU环境2. 准备Ubuntu 24.04镜像3. 启动QEMU安装Ubuntu4

Python UV安装、升级、卸载详细步骤记录

《PythonUV安装、升级、卸载详细步骤记录》:本文主要介绍PythonUV安装、升级、卸载的详细步骤,uv是Astral推出的下一代Python包与项目管理器,主打单一可执行文件、极致性能... 目录安装检查升级设置自动补全卸载UV 命令总结 官方文档详见:https://docs.astral.sh/

Nexus安装和启动的实现教程

《Nexus安装和启动的实现教程》:本文主要介绍Nexus安装和启动的实现教程,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、Nexus下载二、Nexus安装和启动三、关闭Nexus总结一、Nexus下载官方下载链接:DownloadWindows系统根

Java SWT库详解与安装指南(最新推荐)

《JavaSWT库详解与安装指南(最新推荐)》:本文主要介绍JavaSWT库详解与安装指南,在本章中,我们介绍了如何下载、安装SWTJAR包,并详述了在Eclipse以及命令行环境中配置Java... 目录1. Java SWT类库概述2. SWT与AWT和Swing的区别2.1 历史背景与设计理念2.1.

安装centos8设置基础软件仓库时出错的解决方案

《安装centos8设置基础软件仓库时出错的解决方案》:本文主要介绍安装centos8设置基础软件仓库时出错的解决方案,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐... 目录安装Centos8设置基础软件仓库时出错版本 8版本 8.2.200android4版本 javas

Pytorch介绍与安装过程

《Pytorch介绍与安装过程》PyTorch因其直观的设计、卓越的灵活性以及强大的动态计算图功能,迅速在学术界和工业界获得了广泛认可,成为当前深度学习研究和开发的主流工具之一,本文给大家介绍Pyto... 目录1、Pytorch介绍1.1、核心理念1.2、核心组件与功能1.3、适用场景与优势总结1.4、优

conda安装GPU版pytorch默认却是cpu版本

《conda安装GPU版pytorch默认却是cpu版本》本文主要介绍了遇到Conda安装PyTorchGPU版本却默认安装CPU的问题,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的... 目录一、问题描述二、网上解决方案罗列【此节为反面方案罗列!!!】三、发现的根本原因[独家]3.1 p