【嵌入式AI】python转换tflite模型并在PC上调用

2023-12-02 00:40

本文主要是介绍【嵌入式AI】python转换tflite模型并在PC上调用,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

用python转换tflite模型并在PC上调用



环境

  • python3.6
  • tf-nightly 1.13
  • win10 64位
  • i7 8550U



制作frozen模型

就是后缀为pb的模型文件,转换直接调用TF的接口来保存frozen模型文件即可。



转换为tflite模型



非量化转换

转换代码:

# -*- coding:utf-8 -*-
import tensorflow as tfin_path = "./model/frozen_graph.pb"
out_path = "./model/frozen_graph.tflite"
# out_path = "./model/quantize_frozen_graph.tflite"# 模型输入节点
input_tensor_name = ["input/x"]
input_tensor_shape = {"input/x":[1, 784]}
# 模型输出节点
classes_tensor_name = ["out/fc2"]converter = tf.lite.TFLiteConverter.from_frozen_graph(in_path,input_tensor_name, classes_tensor_name,input_shapes = input_tensor_shape)
#converter.post_training_quantize = True
tflite_model = converter.convert()with open(out_path, "wb") as f:f.write(tflite_model)

转换模型前后,模型文件大小几乎一样,都是12M左右。



量化转换

把上面代码里‘converter.post_training_quantize = True’启用就行了。
转换出的模型大小变为原来的约1/4, 只有3M左右。



PC上用python调用tflite模型



调用非量化模型

# -*- coding:utf-8 -*-
import os
os.environ["CUDA_VISIBLE_DEVICES"]="-1"  
import cv2
import numpy as np
import timeimport tensorflow as tftest_image_dir = './test_images/'
#model_path = "./model/quantize_frozen_graph.tflite"
model_path = "./model/frozen_graph.tflite"# Load TFLite model and allocate tensors.
interpreter = tf.lite.Interpreter(model_path=model_path)
interpreter.allocate_tensors()# Get input and output tensors.
input_details = interpreter.get_input_details()
print(str(input_details))
output_details = interpreter.get_output_details()
print(str(output_details))#with tf.Session( ) as sess:
if 1:file_list = os.listdir(test_image_dir)model_interpreter_time = 0start_time = time.time()# 遍历文件for file in file_list:print('=========================')full_path = os.path.join(test_image_dir, file)print('full_path:{}'.format(full_path))# 只要黑白的,大小控制在(28,28)img = cv2.imread(full_path, cv2.IMREAD_GRAYSCALE )res_img = cv2.resize(img,(28,28),interpolation=cv2.INTER_CUBIC) # 变成长784的一维数据new_img = res_img.reshape((784))# 增加一个维度,变为 [1, 784]image_np_expanded = np.expand_dims(new_img, axis=0)image_np_expanded = image_np_expanded.astype('float32') # 类型也要满足要求# 填装数据model_interpreter_start_time = time.time()interpreter.set_tensor(input_details[0]['index'], image_np_expanded)# 注意注意,我要调用模型了interpreter.invoke()output_data = interpreter.get_tensor(output_details[0]['index'])model_interpreter_time += time.time() - model_interpreter_start_time# 出来的结果去掉没用的维度result = np.squeeze(output_data)print('result:{}'.format(result))#print('result:{}'.format(sess.run(output, feed_dict={newInput_X: image_np_expanded})))# 输出结果是长度为10(对应0-9)的一维数据,最大值的下标就是预测的数字print('result:{}'.format( (np.where(result==np.max(result)))[0][0]  ))used_time = time.time() - start_timeprint('used_time:{}'.format(used_time))print('model_interpreter_time:{}'.format(model_interpreter_time))



调用非量化模型

方法不变,把模型路径改为量化的模型路径即可。



win10 python3.6下的时间对比

用11张图片测试,单独统计11次推理部分的时间之和,统计如下

方案frozen模型tflite模型量化tflite模型
时间634ms70ms80ms

很奇怪的是量化模型没有比非量化模型更快。个人猜测这可能跟intel CPU很强的浮点计算能力有关,量化来量化去反而增加了额外的时间。在ARM等移动终端上应该有另外的结论



识别准确率

经过测试,转换为tflite模型后,用mnist数据集里的1万个测试数据测试,准确率在**97.2%**左右,和转换前的97.48%没有明显区别。



命令行转换

从tf1.9开始,tflite_convert就作为和tensorflow一起安装的二进制工具了。以前版本的转换工具叫toco,测试发现toco在tf1.13仍然存在,但是和tflite_convert选项基本一致,可能已经合并了。



不支持的操作

转换模型中遇到一次错误:

Some of the operators in the model are not supported by the standard TensorFlow Lite runtime. If those are native Tensor
Flow operators, you might be able to use the extended runtime by passing --enable_select_tf_ops, or by setting target_op
s=TFLITE_BUILTINS,SELECT_TF_OPS when calling tf.lite.TFLiteConverter(). Otherwise, if you have a custom implementation f
or them you can disable this error with --allow_custom_ops, or by setting allow_custom_ops=True when calling tf.lite.TFL
iteConverter(). Here is a list of builtin operators you are using: ADD, CONV_2D, DEPTHWISE_CONV_2D, DIV, FLOOR, FULLY_CO
NNECTED, MAX_POOL_2D, MUL. Here is a list of operators for which you will need custom implementations: RandomUniform.

上面提示也比较清楚了,就是有不支持的算子:RandomUniform。通过tensorboard查看,发现这个算子在dropout里面。我简单的把dropout去掉了。实际生产中可以用L2正则化和BN来防止过拟合。

试着转换fater_rcnn模型,遇到很多不支持的操作:


2019-01-07 10:35:52.654913: I tensorflow/lite/toco/import_tensorflow.cc:1327] Converting unsupported operation: Enter
2019-01-07 10:35:52.655148: I tensorflow/lite/toco/import_tensorflow.cc:1327] Converting unsupported operation: TensorArrayV3
2019-01-07 10:35:52.655404: I tensorflow/lite/toco/import_tensorflow.cc:193] Unsupported data type in placeholder op: 20
2019-01-07 10:35:52.658516: I tensorflow/lite/toco/import_tensorflow.cc:1327] Converting unsupported operation: TensorArrayScatterV3
2019-01-07 10:35:52.659010: I tensorflow/lite/toco/import_tensorflow.cc:1327] Converting unsupported operation: LoopCond
2019-01-07 10:35:52.659219: I tensorflow/lite/toco/import_tensorflow.cc:1327] Converting unsupported operation: Exit
2019-01-07 10:35:52.660613: I tensorflow/lite/toco/import_tensorflow.cc:1327] Converting unsupported operation: Round
2019-01-07 10:35:52.661490: I tensorflow/lite/toco/import_tensorflow.cc:1327] Converting unsupported operation: Reciprocal
2019-01-07 10:35:52.664014: I tensorflow/lite/toco/import_tensorflow.cc:1327] Converting unsupported operation: Where
2019-01-07 10:35:52.670159: I tensorflow/lite/toco/import_tensorflow.cc:1327] Converting unsupported operation: LoopCond
2019-01-07 10:35:52.670838: I tensorflow/lite/toco/import_tensorflow.cc:1327] Converting unsupported operation: TensorArraySizeV3
2019-01-07 10:35:52.671080: I tensorflow/lite/toco/import_tensorflow.cc:1327] Converting unsupported operation: TensorArrayReadV3
2019-01-07 10:35:52.671869: I tensorflow/lite/toco/import_tensorflow.cc:1327] Converting unsupported operation: TensorArrayScatterV3
2019-01-07 10:35:52.672106: I tensorflow/lite/toco/import_tensorflow.cc:1327] Converting unsupported operation: TensorArrayGatherV3
2019-01-07 10:35:52.673044: I tensorflow/lite/toco/import_tensorflow.cc:1327] Converting unsupported operation: TensorArrayV3
2019-01-07 10:35:52.676008: I tensorflow/lite/toco/import_tensorflow.cc:1327] Converting unsupported operation: CropAndResize
2019-01-07 10:35:52.677367: I tensorflow/lite/toco/import_tensorflow.cc:1327] Converting unsupported operation: TensorArrayWriteV3
2019-01-07 10:35:52.678589: I tensorflow/lite/toco/import_tensorflow.cc:1327] Converting unsupported operation: NonMaxSuppressionV2
2019-01-07 10:35:52.679152: I tensorflow/lite/toco/import_tensorflow.cc:1327] Converting unsupported operation: Size
2019-01-07 10:35:52.686332: I tensorflow/lite/toco/import_tensorflow.cc:1327] Converting unsupported operation: TensorArrayReadV3
2019-01-07 10:35:52.687485: I tensorflow/lite/toco/import_tensorflow.cc:1327] Converting unsupported operation: Reciprocal
2019-01-07 10:35:52.689467: I tensorflow/lite/toco/import_tensorflow.cc:1327] Converting unsupported operation: NonMaxSuppressionV22019-01-07 10:35:52.744613: I tensorflow/lite/toco/graph_transformations/graph_transformations.cc:39] Before Removing unused ops: 1175 operators, 1717 arrays (0 quantized)
2019-01-07 10:35:52.828899: I tensorflow/lite/toco/graph_transformations/graph_transformations.cc:39] After Removing unused ops pass 1: 1144 operators, 1673 arrays (0 quantized)
2019-01-07 10:35:53.303533: I tensorflow/lite/toco/graph_transformations/graph_transformations.cc:39] Before dequantization graph transformations: 737 operators, 1102 arrays (0 quantized)
2019-01-07 10:35:53.351090: F tensorflow/lite/toco/tooling_util.cc:627] Check failed: dim >= 1 (0 vs. 1)



BUG 1

用提tf1.12把模型转换为tflite格式遇到错误‘No module named ‘_tensorflow_wrap_toco’’,搜索了下竟然是官方的问题。升级为tf-nightly1.13问题解决了。

另外一个同事说他用tf1.9也成功了。



BUG 2

在调用tflite模型的时候遇到一个问题,报错信息为:

ValueError: Cannot set tensor: Got tensor of type 3 but expected type 1 for input 9

出错位置为:

interpreter.set_tensor(input_details[0]['index'], image_np_expanded)

看样子是类型错误。通过打印发现我喂的图片是uint8的,而不是float32的。通过调用numpy的astype(‘float32’)方法可以解决这个问题。

同样的读取图片方法在普通的tensorflow模式下不会出错,在tflite下会出错。这说明普通的tensorflow模式下会进行隐式类型转换。



吐槽

据说contrib在tf2.0上要废止了。不知道到时接口又要变成什么样。

最近几个版本上的接口如下:

在这里插入图片描述



参考资料

官方文档:Converter Python API guide

tensorflow/tensorflow/lite/python/interpreter_test.py

tensorflow/tensorflow/lite/python/interpreter.py

tensorflow 20:搭网络、导出模型、运行模型


论坛帖子

How to load a tflite model in script?


github issue:

  • github上讨论‘No module named '_tensorflow_wrap_toco’的issue

  • 另外一个类似的issue

这篇关于【嵌入式AI】python转换tflite模型并在PC上调用的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/443304

相关文章

Python版本信息获取方法详解与实战

《Python版本信息获取方法详解与实战》在Python开发中,获取Python版本号是调试、兼容性检查和版本控制的重要基础操作,本文详细介绍了如何使用sys和platform模块获取Python的主... 目录1. python版本号获取基础2. 使用sys模块获取版本信息2.1 sys模块概述2.1.1

一文详解Python如何开发游戏

《一文详解Python如何开发游戏》Python是一种非常流行的编程语言,也可以用来开发游戏模组,:本文主要介绍Python如何开发游戏的相关资料,文中通过代码介绍的非常详细,需要的朋友可以参考下... 目录一、python简介二、Python 开发 2D 游戏的优劣势优势缺点三、Python 开发 3D

Python函数作用域与闭包举例深度解析

《Python函数作用域与闭包举例深度解析》Python函数的作用域规则和闭包是编程中的关键概念,它们决定了变量的访问和生命周期,:本文主要介绍Python函数作用域与闭包的相关资料,文中通过代码... 目录1. 基础作用域访问示例1:访问全局变量示例2:访问外层函数变量2. 闭包基础示例3:简单闭包示例4

Python实现字典转字符串的五种方法

《Python实现字典转字符串的五种方法》本文介绍了在Python中如何将字典数据结构转换为字符串格式的多种方法,首先可以通过内置的str()函数进行简单转换;其次利用ison.dumps()函数能够... 目录1、使用json模块的dumps方法:2、使用str方法:3、使用循环和字符串拼接:4、使用字符

Python版本与package版本兼容性检查方法总结

《Python版本与package版本兼容性检查方法总结》:本文主要介绍Python版本与package版本兼容性检查方法的相关资料,文中提供四种检查方法,分别是pip查询、conda管理、PyP... 目录引言为什么会出现兼容性问题方法一:用 pip 官方命令查询可用版本方法二:conda 管理包环境方法

基于Python开发Windows自动更新控制工具

《基于Python开发Windows自动更新控制工具》在当今数字化时代,操作系统更新已成为计算机维护的重要组成部分,本文介绍一款基于Python和PyQt5的Windows自动更新控制工具,有需要的可... 目录设计原理与技术实现系统架构概述数学建模工具界面完整代码实现技术深度分析多层级控制理论服务层控制注

pycharm跑python项目易出错的问题总结

《pycharm跑python项目易出错的问题总结》:本文主要介绍pycharm跑python项目易出错问题的相关资料,当你在PyCharm中运行Python程序时遇到报错,可以按照以下步骤进行排... 1. 一定不要在pycharm终端里面创建环境安装别人的项目子模块等,有可能出现的问题就是你不报错都安装

Python打包成exe常用的四种方法小结

《Python打包成exe常用的四种方法小结》本文主要介绍了Python打包成exe常用的四种方法,包括PyInstaller、cx_Freeze、Py2exe、Nuitka,文中通过示例代码介绍的非... 目录一.PyInstaller11.安装:2. PyInstaller常用参数下面是pyinstal

Python爬虫HTTPS使用requests,httpx,aiohttp实战中的证书异步等问题

《Python爬虫HTTPS使用requests,httpx,aiohttp实战中的证书异步等问题》在爬虫工程里,“HTTPS”是绕不开的话题,HTTPS为传输加密提供保护,同时也给爬虫带来证书校验、... 目录一、核心问题与优先级检查(先问三件事)二、基础示例:requests 与证书处理三、高并发选型:

Python中isinstance()函数原理解释及详细用法示例

《Python中isinstance()函数原理解释及详细用法示例》isinstance()是Python内置的一个非常有用的函数,用于检查一个对象是否属于指定的类型或类型元组中的某一个类型,它是Py... 目录python中isinstance()函数原理解释及详细用法指南一、isinstance()函数