大小盘轮动策略:如何在上证50ETF与创业板50ETF之间实现高效投资

本文主要是介绍大小盘轮动策略:如何在上证50ETF与创业板50ETF之间实现高效投资,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1

引言

大小盘动量轮动策略是一种常见的量化投资策略,它利用市场中不同市值板块之间的相对强弱来实现盈利。本文以上证50ETF作为大盘股代表,以创业板50ETF作为小盘股代表。上证50ETF主要反映的是大盘蓝筹股的走势,其成份股主要是市值较大、流动性好、盈利能力强的优质企业。大盘股的投资特点是稳健、低风险,但可能收益较低。相比之下,创业板50ETF主要反映的是小盘成长股的走势,其成份股主要是市值较小、成长性较强的创新型企业。小盘股的投资特点是高风险、高收益。

动量投资策略的基本原理是强者恒强,弱者恒弱。即过去表现较好的资产在未来一段时间内很可能会继续表现优越,而过去表现较差的资产在未来一段时间内很可能会继续表现不佳。动量策略通过捕捉市场的趋势来实现盈利,本策略试图采用价格与均线的比值捕捉大盘和小盘之间的轮动,实现在两个ETF中进行择时交易,可以在不同市场环境下选择相对表现较好的指数ETF进行投资,获得更好的收益。

2

策略实现与回测

下面基于qstock获取上证50ETF和创业板50ETF行情数据。

import qstock as qs
import pandas as pd
import numpy as np
from tabulate import tabulate
import matplotlib.pyplot as plt
def etf_data(code1,code2,ma_period=20):#获取第一个ETF数据data1=qs.get_data(code1)data1['ma'] = data1['close'].rolling(ma_period).mean()data1['ma_ratio'] = (data1['close'] / data1['ma']) - 1data1=data1[['close','open','ma_ratio']]#获取第二个ETF数据data2=qs.get_data(code2)data2['ma'] = data2['close'].rolling(ma_period).mean()data2['ma_ratio'] = (data2['close'] / data2['ma']) - 1data2=data2[['close','open','ma_ratio']]#列重命名cols=['close','open','ma_ratio']cols1=[i+'_x' for i in cols]cols2=[i+'_y' for i in cols]data1=data1.rename(columns=dict(zip(cols,cols1)))data2=data2.rename(columns=dict(zip(cols,cols2)))#数据合并data=pd.concat([data1,data2],axis=1,join='inner').dropna()return data
df=etf_data('510050','159949',30)
#上证50ETF(close_x,图中蓝色)和创业板50ETF(close_y,图中红色)
qs.line(df[['close_x','close_y']]/df[['close_x','close_y']].iloc[0])

由于创业板50ETF上市较晚,因此回测期间为2016年9月1日至203年5月8日。以2016年9月1日为基准,上证50ETF和创业板50ETF累计净值如下图所示。2016.9-2018.12年,大盘强于小盘;2019.1-2021.1二者均出现向上趋势,小盘强于大盘;2021-2023.5指数均出现下跌趋势,其中大盘相对小盘较稳健。

cd6cd53fca7e306b490bc3dc23289935.jpeg

交易策略思路:

交易策略基于两个指数ETF:上证50ETF(510050,代表大盘股)和创业板50ETF(159949,代表小盘股),下面分别使用x和y表示,对应价格为close_x和close_y。策略的核心逻辑是根据两者的均线比例动态调整持仓,以捕捉相对强势的标的,并在不同市场环境下实现超额收益。具体如下:

(1)若当前无持仓,根据昨日两个标的的均线比例判断:a. 若x的均线比例大于0且大于y的均线比例,买入x标的。b. 若y的均线比例大于0且大于x的均线比例,买入y标的。

(2)若当前持仓为x标的,根据昨日两个标的的均线比例判断:a. 若两者均线比例都小于0,卖出x标的并空仓。b. 若y的均线比例大于0且大于x的均线比例,卖出x标的,买入y标的。

(3)若当前持仓为y标的,根据昨日两个标的的均线比例判断:a. 若两者均线比例都小于0,卖出y标的并空仓。b. 若x的均线比例大于0且大于y的均线比例,卖出y标的,买入x标的。

策略在每个交易日都会根据上述逻辑进行相应的操作,从而实现在大盘股和小盘股之间的动态轮动。下面先基于pandas构建向量化的简易回测函数,这里暂不考虑交易手续费和滑点的影响。由于代码篇幅较长,此处省略,完整代码见Python金融量化知识星球【文末】

def backtest(df):# 初始化holding = Nonedf['strategy_return']=0# 回测for i in range(1, len(df)):#判断持仓情况#空仓if holding is None:#注意信号判断要滞后一期#触发空仓条件#触发买入x标的条件#触发买入y标的条件#持仓xelif holding == 'x':#触发空仓条件#触发买入x标的条件#触发买入y标的条件#持仓yelif holding == 'y':#触发空仓条件#触发买入x标的条件#触发买入y标的条件#计算累计收益率#计算年化收益率#计算夏普比率#计算最大回撤# 输出回测指标比较结果

回测结果如下:

backtest(etf_data('510050','159949',30))

44fe43400152757ab98bf55c271de090.jpeg

d09d82973ef652203678f1f79a8a6441.jpeg

从回测结果来看,在2016年9月1日至2023年5月8日期间,ETF轮动策略的总收益率为1.3640,年化收益率为0.1432,相较于上证50ETF和创业板50ETF的表现,策略取得了较好的收益,同时策略在最大回撤和夏普比率上均优于买入持有对应指数ETF。当然,这里没有考虑交易手续费和滑点的影响。下面再给出基于backtrader事件驱动的回测结果(部分)进行比较。

fab7aaff456528aee6529546f4d64ceb.jpeg

bfcdd996044261f158ecdf5fc2c6c0c3.jpeg

a76b8b8149e4f34b896298970a4e9b1a.jpeg

f40194befbfdf5f38e4b7ba5829cf326.jpeg

7e6369b043ce0a2d3f1da89f26194a49.jpeg

向量化回测和基于事件驱动的回测方法各有优缺点。向量化回测在计算速度上具有优势,但它假设在一个交易日内可以同时买卖,这在实际交易中是不现实的。相反,事件驱动回测会更接近现实交易环境,因为它是基于时间序列的,每个交易日的操作都会受到前一个交易日操作的影响。在本例中,backtrader回测结果表明年化收益率为8%,累计收益率64.48%,最大回撤35%,均低于向量化回测结果。这可能是因为向量化回测在计算收益时存在一定程度的偏差,导致收益被高估,而事件驱动回测则更接近实际交易情况。

3

结语

通过上述的大小盘指数ETF动量轮动交易策略,本文尝试在不同市场环境下捕捉相对强势的投资标的,以实现超额收益。策略关注上证50ETF(510050,代表大盘股)和创业板50ETF(159949,代表小盘股),并根据它们的均线比例动态调整持仓。然而,在实际操作中应谨慎对待此类策略,因为历史表现并不能确保未来的成功。在实际应用中,还需要关注风险管理、资金管理和交易成本等多个方面,确保策略的可持续性。同时,投资者可以尝试结合其他技术指标、市场情绪等因素,进一步优化策略,以适应不断变化的市场环境。总而言之,大小盘指数ETF动量轮动交易策略为我们提供了一个有趣的思路,有助于在市场波动中发现投资机会。但在实践中,大家应关注多种风险因素,不断完善和优化策略,以实现长期稳健的投资回报。

447f420d12503bbc8dd267077639ffda.png

关于Python金融量化

78b97b65254665bbd70188d6c9047d49.png

专注于分享Python在金融量化领域的应用。加入知识星球,可以免费获取qstock源代码、30多g的量化投资视频资料、量化金融相关PDF资料、公众号文章Python完整源码、与博主直接交流、答疑解惑等。添加个人微信sky2blue2可获取八五折优惠。

65be524211bbc5a832b2568926263fb4.jpeg

这篇关于大小盘轮动策略:如何在上证50ETF与创业板50ETF之间实现高效投资的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/442751

相关文章

Python实现精准提取 PDF中的文本,表格与图片

《Python实现精准提取PDF中的文本,表格与图片》在实际的系统开发中,处理PDF文件不仅限于读取整页文本,还有提取文档中的表格数据,图片或特定区域的内容,下面我们来看看如何使用Python实... 目录安装 python 库提取 PDF 文本内容:获取整页文本与指定区域内容获取页面上的所有文本内容获取

基于Python实现一个Windows Tree命令工具

《基于Python实现一个WindowsTree命令工具》今天想要在Windows平台的CMD命令终端窗口中使用像Linux下的tree命令,打印一下目录结构层级树,然而还真有tree命令,但是发现... 目录引言实现代码使用说明可用选项示例用法功能特点添加到环境变量方法一:创建批处理文件并添加到PATH1

Java使用HttpClient实现图片下载与本地保存功能

《Java使用HttpClient实现图片下载与本地保存功能》在当今数字化时代,网络资源的获取与处理已成为软件开发中的常见需求,其中,图片作为网络上最常见的资源之一,其下载与保存功能在许多应用场景中都... 目录引言一、Apache HttpClient简介二、技术栈与环境准备三、实现图片下载与保存功能1.

canal实现mysql数据同步的详细过程

《canal实现mysql数据同步的详细过程》:本文主要介绍canal实现mysql数据同步的详细过程,本文通过实例图文相结合给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的... 目录1、canal下载2、mysql同步用户创建和授权3、canal admin安装和启动4、canal

Nexus安装和启动的实现教程

《Nexus安装和启动的实现教程》:本文主要介绍Nexus安装和启动的实现教程,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、Nexus下载二、Nexus安装和启动三、关闭Nexus总结一、Nexus下载官方下载链接:DownloadWindows系统根

java Long 与long之间的转换流程

《javaLong与long之间的转换流程》Long类提供了一些方法,用于在long和其他数据类型(如String)之间进行转换,本文将详细介绍如何在Java中实现Long和long之间的转换,感... 目录概述流程步骤1:将long转换为Long对象步骤2:将Longhttp://www.cppcns.c

SpringBoot集成LiteFlow实现轻量级工作流引擎的详细过程

《SpringBoot集成LiteFlow实现轻量级工作流引擎的详细过程》LiteFlow是一款专注于逻辑驱动流程编排的轻量级框架,它以组件化方式快速构建和执行业务流程,有效解耦复杂业务逻辑,下面给大... 目录一、基础概念1.1 组件(Component)1.2 规则(Rule)1.3 上下文(Conte

MySQL 横向衍生表(Lateral Derived Tables)的实现

《MySQL横向衍生表(LateralDerivedTables)的实现》横向衍生表适用于在需要通过子查询获取中间结果集的场景,相对于普通衍生表,横向衍生表可以引用在其之前出现过的表名,本文就来... 目录一、横向衍生表用法示例1.1 用法示例1.2 使用建议前面我们介绍过mysql中的衍生表(From子句

Mybatis的分页实现方式

《Mybatis的分页实现方式》MyBatis的分页实现方式主要有以下几种,每种方式适用于不同的场景,且在性能、灵活性和代码侵入性上有所差异,对Mybatis的分页实现方式感兴趣的朋友一起看看吧... 目录​1. 原生 SQL 分页(物理分页)​​2. RowBounds 分页(逻辑分页)​​3. Page

Python基于微信OCR引擎实现高效图片文字识别

《Python基于微信OCR引擎实现高效图片文字识别》这篇文章主要为大家详细介绍了一款基于微信OCR引擎的图片文字识别桌面应用开发全过程,可以实现从图片拖拽识别到文字提取,感兴趣的小伙伴可以跟随小编一... 目录一、项目概述1.1 开发背景1.2 技术选型1.3 核心优势二、功能详解2.1 核心功能模块2.