2023年小美赛认证杯D题:望远镜的微光因子(The Twilight Factor of a Telescope)思路模型代码解析

本文主要是介绍2023年小美赛认证杯D题:望远镜的微光因子(The Twilight Factor of a Telescope)思路模型代码解析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

2023年小美赛认证杯D题:望远镜的微光因子(The Twilight Factor of a Telescope)

【请电脑打开本文链接,扫描下方名片中二维码,获取更多资料】

一、问题重述

当我们使用普通的光学望远镜在昏暗的光线中观察远处的目标时,入口孔径越大,进入双筒望远镜的光线就越多。望远镜的放大倍数越大,视野就越窄,图像就越暗淡。但是放大倍数越高,目标就会显得越大,观察到的细节也会更多[1]。在光线较暗的情况下,我们需要一个比较性指标来评估双筒望远镜的适用性。蔡司公司使用了一个经验公式,称为暮光因子,其定义如下[2]:其中m为放大倍数,d为镜头直径(以毫米为单位)。 暮光因子是一个数字,用于比较在低光条件下使用的双筒望远镜或瞄准镜的效果。暮光因子越大,在低光条件下观察到的细节就越多。然而,暮光因子也可能会引导错误,就像以下例子所示:一个8×56和一个56×8的双筒望远镜(虽然这样的型号并不存在,但在理论上是可行的),它们的暮光因子都是21.2。尽管8×56型号在暮光中表现理想,但56×8的组合在白天甚至都无法使用[3]。 我们希望有一个更有用的指标,来表达望远镜在低光条件下的性能,并且仅使用基本参数。这将为望远镜选择提供一个规格参考。更详细反映图像质量的指标超出了我们的讨论范围,例如对比度、透过率、色彩还原等。

任务:

  1. 请考虑在昏暗光线下人眼的视觉特性,并建立一个合理的模型,提出适用于人眼直接观察的双筒望远镜暮光系数算法。
  2. 如果视觉接收器不是人眼而是CMOS视频录制设备,请考虑在昏暗光线下CMOS的感应特性,并建立一个合理的数学模型,提出适用于CMOS视频记录镜头的暮光系数算法。

注:在研究上述问题时,如果涉及到光感受器的性能参数,请自行查找所需数据。或者您可以在论文中计算一些虚拟示例,但您应该给出所需参数的合理定义和可行的低成本测量方法。这样我们就可以按照您的测量方案进行实施,并给出最终结果。

二、思路解析

问题一思路分析

  1. 研究人眼在暗光环境下的视觉特性:
    • 理解人眼在低光条件下的生理特征,包括视锥细胞的敏感性、视网膜的光感受性等。
    • 研究人眼在暗光环境下的视觉特性,包括视锥细胞的光敏度、暗视觉的阈值、人眼对低光环境下的适应能力等。
    • 考虑人眼的光敏度曲线,了解在不同光强度下人眼对光线的感知能力。
  2. 建立基于人眼视觉特性的暮光系数模型:
    • 考虑到人眼视觉特性,结合放大倍数和镜头直径等基本参数,构建一个适合人眼直接观察的暮光系数算法模型。
    • 考虑指数衰减模型或对人眼暗光适应性的经验公式,将放大倍数和镜头直径等参数整合到算法中。
  3. 模型验证和调整:
    • 使用实际观测数据或模拟实验来验证模型的准确性和适用性。
    • 通过与实际观察结果进行比较,对模型进行调整和优化,提高其在不同条件下的预测能力。
  4. 可行性和实施性考虑:
    • 确保所提出的算法模型具有实际可行性,并考虑其实施的便捷性和成本效益性。
    • 提供基于现有技术和可获得数据的合理测量方法,以便实施该算法并获得最终结果。
可选的模型:
  • 线性模型: 基于光敏特性和放大倍数等因素建立线性模型。
  • 指数衰减模型: 考虑到人眼在低光下的非线性感知,采用指数函数建模。
  • Logistic回归模型: 考虑光线强度、放大倍数等因素,利用Logistic回归拟合暮光系数。
  • 神经网络模型: 使用神经网络学习人眼暮光感知特性,构建更复杂的非线性模型。
Python示例代码(简化):

以下是一个简化的Python示例,用指数衰减模型建立暮光系数算法的伪代码示例:

import math# 定义函数计算暮光系数
def twilight_coefficient(magnification, lens_diameter):twilight_factor = magnification * math.sqrt(lens_diameter)return twilight_factor# 示例数据
magnification = 10
lens_diameter = 50# 计算暮光系数
twilight_factor = twilight_coefficient(magnification, lens_diameter)
print(f"暮光系数为:{twilight_factor}")

问题二思路分析

  1. 研究CMOS在低光环境下的感应特性:
    • 了解CMOS传感器在暗光条件下的灵敏度、信噪比、动态范围等特性。
    • 探索CMOS感光曲线和暗电流等影响因素,以及它们对暮光性能的影响。
  2. 建立基于CMOS传感器特性的暮光系数模型:
    • 基于CMOS传感器的感应特性,结合其在低光环境下的灵敏度和动态范围等参数,建立暮光系数算法模型。
    • 考虑Gamma校正、灰度级或噪声模型等方法,将CMOS的感应特性和暗光环境下的表现结合起来。
    • 使用已有的模型或基于信噪比、感光度等指标建立算法以计算暮光系数。
  3. 模型验证和调整:
    • 使用实际的CMOS传感器数据或模拟实验来验证和评估模型的准确性。
    • 通过与实际CMOS设备的实测数据进行比较,对模型进行调整和改进,提高其适用性和预测能力。
  4. 实施性考虑:
    • 确保所提出的算法模型适用于实际CMOS视频录制设备,并具有实施的可行性。
    • 提供基于现有技术和可获得数据的合理测量方法,以便实施该算法并获得最终结果。
可选的模型:
  • Gamma校正模型: 考虑到CMOS响应曲线,使用Gamma校正来建立暮光系数。
  • 灰度级模型: 考虑CMOS在不同亮度下的灰度级特性,建立相应的数学模型。
  • 噪声模型: 考虑噪声影响,建立噪声模型并将其纳入暮光系数计算。
Python示例代码(简化):

以下是一个简化的Python示例,用Gamma校正模型建立CMOS暮光系数算法的伪代码示例:

import math# 定义函数计算CMOS暮光系数(假设使用Gamma校正模型)
def twilight_coefficient_CMS(gamma, sensitivity):twilight_factor = math.pow(sensitivity, gamma)return twilight_factor# 示例数据
gamma_value = 2.2
sensitivity_value = 0.8# 计算暮光系数
twilight_factor_CMS = twilight_coefficient_CMS(gamma_value, sensitivity_value)
print(f"CMOS暮光系数为:{twilight_factor_CMS}")

【请电脑打开本文链接,扫描下方名片中二维码,获取更多资料】

这篇关于2023年小美赛认证杯D题:望远镜的微光因子(The Twilight Factor of a Telescope)思路模型代码解析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/442218

相关文章

Java中Redisson 的原理深度解析

《Java中Redisson的原理深度解析》Redisson是一个高性能的Redis客户端,它通过将Redis数据结构映射为Java对象和分布式对象,实现了在Java应用中方便地使用Redis,本文... 目录前言一、核心设计理念二、核心架构与通信层1. 基于 Netty 的异步非阻塞通信2. 编解码器三、

Java HashMap的底层实现原理深度解析

《JavaHashMap的底层实现原理深度解析》HashMap基于数组+链表+红黑树结构,通过哈希算法和扩容机制优化性能,负载因子与树化阈值平衡效率,是Java开发必备的高效数据结构,本文给大家介绍... 目录一、概述:HashMap的宏观结构二、核心数据结构解析1. 数组(桶数组)2. 链表节点(Node

Java 虚拟线程的创建与使用深度解析

《Java虚拟线程的创建与使用深度解析》虚拟线程是Java19中以预览特性形式引入,Java21起正式发布的轻量级线程,本文给大家介绍Java虚拟线程的创建与使用,感兴趣的朋友一起看看吧... 目录一、虚拟线程简介1.1 什么是虚拟线程?1.2 为什么需要虚拟线程?二、虚拟线程与平台线程对比代码对比示例:三

一文解析C#中的StringSplitOptions枚举

《一文解析C#中的StringSplitOptions枚举》StringSplitOptions是C#中的一个枚举类型,用于控制string.Split()方法分割字符串时的行为,核心作用是处理分割后... 目录C#的StringSplitOptions枚举1.StringSplitOptions枚举的常用

Python函数作用域与闭包举例深度解析

《Python函数作用域与闭包举例深度解析》Python函数的作用域规则和闭包是编程中的关键概念,它们决定了变量的访问和生命周期,:本文主要介绍Python函数作用域与闭包的相关资料,文中通过代码... 目录1. 基础作用域访问示例1:访问全局变量示例2:访问外层函数变量2. 闭包基础示例3:简单闭包示例4

MyBatis延迟加载与多级缓存全解析

《MyBatis延迟加载与多级缓存全解析》文章介绍MyBatis的延迟加载与多级缓存机制,延迟加载按需加载关联数据提升性能,一级缓存会话级默认开启,二级缓存工厂级支持跨会话共享,增删改操作会清空对应缓... 目录MyBATis延迟加载策略一对多示例一对多示例MyBatis框架的缓存一级缓存二级缓存MyBat

前端缓存策略的自解方案全解析

《前端缓存策略的自解方案全解析》缓存从来都是前端的一个痛点,很多前端搞不清楚缓存到底是何物,:本文主要介绍前端缓存的自解方案,文中通过代码介绍的非常详细,需要的朋友可以参考下... 目录一、为什么“清缓存”成了技术圈的梗二、先给缓存“把个脉”:浏览器到底缓存了谁?三、设计思路:把“发版”做成“自愈”四、代码

Java集合之Iterator迭代器实现代码解析

《Java集合之Iterator迭代器实现代码解析》迭代器Iterator是Java集合框架中的一个核心接口,位于java.util包下,它定义了一种标准的元素访问机制,为各种集合类型提供了一种统一的... 目录一、什么是Iterator二、Iterator的核心方法三、基本使用示例四、Iterator的工

springboot依靠security实现digest认证的实践

《springboot依靠security实现digest认证的实践》HTTP摘要认证通过加密参数(如nonce、response)验证身份,避免明文传输,但存在密码存储风险,相比基本认证更安全,却因... 目录概述参数Demopom.XML依赖Digest1Application.JavaMyPasswo

Java 线程池+分布式实现代码

《Java线程池+分布式实现代码》在Java开发中,池通过预先创建并管理一定数量的资源,避免频繁创建和销毁资源带来的性能开销,从而提高系统效率,:本文主要介绍Java线程池+分布式实现代码,需要... 目录1. 线程池1.1 自定义线程池实现1.1.1 线程池核心1.1.2 代码示例1.2 总结流程2. J