NOIP2006提高组第二轮T2:金明的预算方案

2023-12-01 15:20

本文主要是介绍NOIP2006提高组第二轮T2:金明的预算方案,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

题目链接

[NOIP2006 提高组] 金明的预算方案

题目描述

金明今天很开心,家里购置的新房就要领钥匙了,新房里有一间金明自己专用的很宽敞的房间。更让他高兴的是,妈妈昨天对他说:“你的房间需要购买哪些物品,怎么布置,你说了算,只要不超过 n n n 元钱就行”。今天一早,金明就开始做预算了,他把想买的物品分为两类:主件与附件,附件是从属于某个主件的,下表就是一些主件与附件的例子:

主件附件
电脑打印机,扫描仪
书柜图书
书桌台灯,文具
工作椅

如果要买归类为附件的物品,必须先买该附件所属的主件。每个主件可以有 0 0 0 个、 1 1 1 个或 2 2 2 个附件。每个附件对应一个主件,附件不再有从属于自己的附件。金明想买的东西很多,肯定会超过妈妈限定的 n n n 元。于是,他把每件物品规定了一个重要度,分为 5 5 5 等:用整数 1 ∼ 5 1 \sim 5 15 表示,第 5 5 5 等最重要。他还从因特网上查到了每件物品的价格(都是 10 10 10 元的整数倍)。他希望在不超过 n n n 元的前提下,使每件物品的价格与重要度的乘积的总和最大。

设第 j j j 件物品的价格为 v j v_j vj,重要度为 w j w_j wj,共选中了 k k k 件物品,编号依次为 j 1 , j 2 , … , j k j_1,j_2,\dots,j_k j1,j2,,jk,则所求的总和为:

v j 1 × w j 1 + v j 2 × w j 2 + ⋯ + v j k × w j k v_{j_1} \times w_{j_1}+v_{j_2} \times w_{j_2}+ \dots +v_{j_k} \times w_{j_k} vj1×wj1+vj2×wj2++vjk×wjk

请你帮助金明设计一个满足要求的购物单。

输入格式

第一行有两个整数,分别表示总钱数 n n n 和希望购买的物品个数 m m m

2 2 2 到第 ( m + 1 ) (m + 1) (m+1) 行,每行三个整数,第 ( i + 1 ) (i + 1) (i+1) 行的整数 v i v_i vi p i p_i pi q i q_i qi 分别表示第 i i i 件物品的价格、重要度以及它对应的的主件。如果 q i = 0 q_i=0 qi=0,表示该物品本身是主件。

输出格式

输出一行一个整数表示答案。

样例 #1

样例输入 #1

1000 5
800 2 0
400 5 1
300 5 1
400 3 0
500 2 0

样例输出 #1

2200

提示

数据规模与约定

对于全部的测试点,保证 1 ≤ n ≤ 3.2 × 1 0 4 1 \leq n \leq 3.2 \times 10^4 1n3.2×104 1 ≤ m ≤ 60 1 \leq m \leq 60 1m60 0 ≤ v i ≤ 1 0 4 0 \leq v_i \leq 10^4 0vi104 1 ≤ p i ≤ 5 1 \leq p_i \leq 5 1pi5 0 ≤ q i ≤ m 0 \leq q_i \leq m 0qim,答案不超过 2 × 1 0 5 2 \times 10^5 2×105

算法思想

根据题目描述:

  • 想买的物品分为主件与附件,如果要买归类为附件的物品,必须先买该附件所属的主件
  • 每个主件可以有 0 0 0 个、 1 1 1 个或 2 2 2 个附件

由于附件数量很小,可以将主件和附件组合在一起变成分组背包问题,例如附件数量为 2 2 2时,那么一个分组中有4种组合:

  • 主件 a i a_i ai,不选择附件
  • 主件 a i a_i ai,选择附件 b i 1 b_{i1} bi1
  • 主件 a i a_i ai,选择附件 b i 2 b_{i2} bi2
  • 主件 a i a_i ai,选择附件 b i 1 b_{i1} bi1 b i 2 b_{i2} bi2

根据以上分析,可以使用分组背包的思想解决,可以参考博主的另一篇文章——每周一算法:背包问题(四)分组背包。

时间复杂度

  • 状态数为 n × m n\times m n×m
  • 在状态计算中,主件最多有 2 2 2个附件,因此每个分组最多有 4 4 4个组合

总的时间复杂度为 O ( n × m × 4 ) = 3.2 × 1 0 4 × 60 × 4 = 7 , 680 , 000 O(n\times m\times 4)=3.2 \times 10^4\times60\times4=7,680,000 O(n×m×4)=3.2×104×60×4=7,680,000

代码实现

#include <iostream>
#include <vector>
using namespace std;
typedef pair<int, int> PII;
const int N = 60, M = 32000;
PII a[N]; //主件价格和重要度
vector<PII> b[N]; //附件
int f[M];
int main()
{int n, m;cin >> m >> n;for(int i = 1; i <= n; i ++){int v, p, q;cin >> v >> p >> q;if(q == 0) //主件{a[i].first = v, a[i].second = v * p;}else //住件q的附件b[q].push_back({v, v * p});}//分组背包for(int i = 1; i <= n; i ++){//背包空间优化for(int j = m; j >= 0; j --){int len = b[i].size(); //第i个主件中附件的数量//二进制枚举主件和附件的组合00,01,10,11for(int k = 0; k < (1 << len); k ++){int v = a[i].first, w = a[i].second; //主件的体积和价值for(int t = 0; t < len; t ++) //枚举附件{if(k >> t & 1) //如果选择第t个附件{v += b[i][t].first;w += b[i][t].second;}}if(j >= v) f[j] = max(f[j], f[j - v] + w);}}}cout << f[m];return 0;
}

这篇关于NOIP2006提高组第二轮T2:金明的预算方案的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/441690

相关文章

电脑找不到mfc90u.dll文件怎么办? 系统报错mfc90u.dll丢失修复的5种方案

《电脑找不到mfc90u.dll文件怎么办?系统报错mfc90u.dll丢失修复的5种方案》在我们日常使用电脑的过程中,可能会遇到一些软件或系统错误,其中之一就是mfc90u.dll丢失,那么,mf... 在大部分情况下出现我们运行或安装软件,游戏出现提示丢失某些DLL文件或OCX文件的原因可能是原始安装包

电脑显示mfc100u.dll丢失怎么办?系统报错mfc90u.dll丢失5种修复方案

《电脑显示mfc100u.dll丢失怎么办?系统报错mfc90u.dll丢失5种修复方案》最近有不少兄弟反映,电脑突然弹出“mfc100u.dll已加载,但找不到入口点”的错误提示,导致一些程序无法正... 在计算机使用过程中,我们经常会遇到一些错误提示,其中最常见的就是“找不到指定的模块”或“缺少某个DL

Java Response返回值的最佳处理方案

《JavaResponse返回值的最佳处理方案》在开发Web应用程序时,我们经常需要通过HTTP请求从服务器获取响应数据,这些数据可以是JSON、XML、甚至是文件,本篇文章将详细解析Java中处理... 目录摘要概述核心问题:关键技术点:源码解析示例 1:使用HttpURLConnection获取Resp

Java实现优雅日期处理的方案详解

《Java实现优雅日期处理的方案详解》在我们的日常工作中,需要经常处理各种格式,各种类似的的日期或者时间,下面我们就来看看如何使用java处理这样的日期问题吧,感兴趣的小伙伴可以跟随小编一起学习一下... 目录前言一、日期的坑1.1 日期格式化陷阱1.2 时区转换二、优雅方案的进阶之路2.1 线程安全重构2

Java图片压缩三种高效压缩方案详细解析

《Java图片压缩三种高效压缩方案详细解析》图片压缩通常涉及减少图片的尺寸缩放、调整图片的质量(针对JPEG、PNG等)、使用特定的算法来减少图片的数据量等,:本文主要介绍Java图片压缩三种高效... 目录一、基于OpenCV的智能尺寸压缩技术亮点:适用场景:二、JPEG质量参数压缩关键技术:压缩效果对比

SpringBoot首笔交易慢问题排查与优化方案

《SpringBoot首笔交易慢问题排查与优化方案》在我们的微服务项目中,遇到这样的问题:应用启动后,第一笔交易响应耗时高达4、5秒,而后续请求均能在毫秒级完成,这不仅触发监控告警,也极大影响了用户体... 目录问题背景排查步骤1. 日志分析2. 性能工具定位优化方案:提前预热各种资源1. Flowable

Java进行文件格式校验的方案详解

《Java进行文件格式校验的方案详解》这篇文章主要为大家详细介绍了Java中进行文件格式校验的相关方案,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录一、背景异常现象原因排查用户的无心之过二、解决方案Magandroidic Number判断主流检测库对比Tika的使用区分zip

IDEA中Git版本回退的两种实现方案

《IDEA中Git版本回退的两种实现方案》作为开发者,代码版本回退是日常高频操作,IntelliJIDEA集成了强大的Git工具链,但面对reset和revert两种核心回退方案,许多开发者仍存在选择... 目录一、版本回退前置知识二、Reset方案:整体改写历史1、IDEA图形化操作(推荐)1.1、查看提

Python实现html转png的完美方案介绍

《Python实现html转png的完美方案介绍》这篇文章主要为大家详细介绍了如何使用Python实现html转png功能,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 1.增强稳定性与错误处理建议使用三层异常捕获结构:try: with sync_playwright(

Java使用多线程处理未知任务数的方案介绍

《Java使用多线程处理未知任务数的方案介绍》这篇文章主要为大家详细介绍了Java如何使用多线程实现处理未知任务数,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 知道任务个数,你可以定义好线程数规则,生成线程数去跑代码说明:1.虚拟线程池:使用 Executors.newVir