【数据结构】反转单向链表的方法之头插法(含原理讲解及代码实现)

本文主要是介绍【数据结构】反转单向链表的方法之头插法(含原理讲解及代码实现),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

将单向链表进行反转的方法很多,这里我们讲解一种比较简单的方法——头插法

目录

为什么头插法要用到三个指针?

第一个指针的用途

第二个指针的用途 

双指针为什么不能反转链表?

 第三个指针的用途

反转链表小结及全过程图示

反转链表代码实现

函数实现

整体项目实现

头文件其他函数

源文件

执行结果


为什么头插法要用到三个指针?

可能有的人听过这个方法,听说这个方法要用到三个指针,但是不知道为什么,接下来我会用一道实题,来为大家进行细致的讲解,方便大家明白其中的原理以及代码实现中的一些细节。

上课啦斗图表情包-表情uilhjf-爱斗图

例:现有一个单向链表,节点顺序为A->B->C->D->E,请你用某种方法将该链表内节点顺序反转为E->D->C->B->A

首先,我们定义一个结构体,我们将其中的存放的数据命名为val,存放的指针命名为next 

//定义一个结构体
struct node
{int val;struct node* next;
}List;

第一个指针的用途

既然要反转链表,我们自然要改变next的指向,就这道题而言,我们来实际操作一下,我们来改变一下A中next的指向,我们将A中next的指向改为NULL,该过程如下图所示

第一个问题出现了,由于A的next指向发生了改变,我们无法再找到节点B,链表中其他后续节点的next指向自然也就无法发生改变。

我们需要一个指针,来找到next指向发生改变的节点的后一个节点,以对后续节点进行操作,这句话看着有点绕啊。

举个栗子,在上面这个图中,A里面的next指针的指向发生了改变,我们需要用一个指针,来指向A后面的这个B,在这里我们将这个指针命名为pbehind,如下图所示

自此,第一个指针诞生了! 

第二个指针的用途 

 接着我们对B中的next指向进行改变,但是第二个问题出现了,B后面只有C、D、E啊,我找不到A啊,那咋办呢?

这时候我们就需要第二个指针了,我们需要他指向即将进行next指向改变的节点的前一个节点

在这道题中,也就是B的指向即将改变,我们需要用一个指针,来指向B前面的A,这里我们将这个指针命名为pfront,如下图所示

自此,第二个指针诞生了! 

双指针为什么不能反转链表?

 这时候可能有些同学有这种感觉 

 “ 诶,你等会!   我怎么感觉这两个指针就能搞定了啊!”

格局小了是什么意思? - 天晴科普网

 那好,我们就用这两个指针来进行一下实际操作,看看是不是真的能完成题目的要求,具体过程如下图所示

 乍一看,这不好得很吗!这博主还非说要用三个指针,真是菜,一点理解都没有

食物二创,我可能不...但你是真的...相关表情包,表情包专辑 - 求表情网,斗图从此不求人!

别着急,我写几行伪代码,再给你配几个图,你就知道咋回事了

就拿C到D这段举例吧,一开始链表是这样的

 我们来写几行伪代码,来改变C中next的指向

//令pbehind移动到节点D上
pbehind->next = D;
//断开C与D的链接
C->next = pfront;

 第三个指针的用途

这第三个问题出现了,指针pfront该怎么过去,这时候就会出现这种情况,如下图所示

指针pfront根本就没法过去,pfront指向的是B,而B的next指向的是A,可他要移动到C去,指针pfront被永远的困在了B那里,而我们知道,只靠一个指针是没办法完成链表反转的 

吴孟达:演员就是骗子,我骗了几代人_凤凰网

自此,第三个指针诞生了!

 它需要承担起帮助pfront找到被指向的节点,在这个图中,他要做到的就是帮助pfront找到C,这里我们将这个指针命名为ptemp,如下图所示

 接下来,我们再写几行伪代码,来改变C中next的指向

//将节点C中的next指向改为节点B
ptemp->next = pfront;//将pfront通过ptemp移动到节点C上
pfront = ptemp;//将ptemp通过pbehind移动到节点D上
//以在下一次进行节点D的next指向改变,同时下一次能够让pfront移动到节点D上
ptemp = pbehind;//令pbehind移动到节点E上,下一次能够让ptemp移动到节点E上
pbehind->next = E;

 执行完成后得到的结果如下图所示

反转链表小结及全过程图示

我们来粗分一下反转链表的两个步骤:

  1. 转向,也就是改变next的指向
  2. 三指针平移,先pfront,接着是ptemp,最后是pbehind

自此,反转链表的要求我们已经全部满足了,我们来看一下三指针反转题目中所给链表的全过程,如下图所示

反转链表代码实现

函数实现

PS:大家最好把功能函数写在头文件中,不要写在main函数中,main函数是用来执行功能函数的

int traversal_head_insert(node** pphead)
//这里用到二级指针是因为要改变头节点的位置
{//如果该链表为空或者链表中只有一个结点,直接退出if (!(*pphead)||(*pphead)->next == NULL){return 0;}//如果链表只有两个结点else if ((*pphead)->next->next == NULL){(*pphead)->next->next = *pphead;(*pphead)->next = NULL;return 0;}//如果链表有大于等于三个节点else{//p1是pfront,p2是ptemp,p3是pbehindnode* p1 = NULL;node* p2 = (*pphead);node* p3 = (*pphead)->next;while (p3 != NULL){//断开转向(*pphead)->next = p1;*pphead = p3;//平移三个指针p1 = p2;p2 = p3;p3 = p3->next;}//当p3==NULL时,说明链表中只有两个节点未进行反转,此时已经不需要再次平移//此时p2指向原链表的尾结点(*pphead)->next = p1;*pphead = p2;return 0;}
}

整体项目实现

头文件其他函数

#pragma once
#include<iostream>
using namespace std;struct node
{int data;struct node* next;
}List;//链表初始化(可以有虚拟头节点,有尾结点,头结点)
void List_Create(node** pphead)
{node* ptemp = NULL;node* ptail = (node*)malloc(sizeof(List));ptail->next = NULL;int length;//链表的长度cout << "请输入你想要初始化的链表的长度:";cin >> length;int val;//链表的结点值cout << "请依次输入链表中的值:";while (length){cin >> val;ptemp = (node*)malloc(sizeof(node));ptemp->data = val; ptemp->next = NULL;//结点的初始化if (*pphead == NULL)//如果链表为空,即输入链表的第一个值{*pphead = ptemp;}else//如果链表非空{ptail->next = ptemp;}ptail = ptemp;//ptail作为尾结点length--;}cout << "链表初始化完成" << endl;return;
}//链表打印
void list_print(node* phead)
{node* pphead = phead;cout << "该链表打印结果为:" << endl;while (pphead){cout << pphead->data << "->";pphead = pphead->next;}cout << endl << "该链表打印完成" << endl;return;
}

源文件

#include"List_Function.h"
using namespace std;int main()
{//创建一个头节点node* phead = (node*)malloc(sizeof(List));phead = NULL;List_Create(&phead);list_print(phead);cout << "此时将链表进行翻转" << endl;traversal_head_insert(&phead);list_print(phead);
}

执行结果

 大家有什么地方没有看懂的话,可以在评论区留言给我,咱要力所能及的话就帮大家解答解答

今天的学习记录到此结束啦,咱们下篇文章见,ByeBye!

这篇关于【数据结构】反转单向链表的方法之头插法(含原理讲解及代码实现)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/438606

相关文章

使用Python和OpenCV库实现实时颜色识别系统

《使用Python和OpenCV库实现实时颜色识别系统》:本文主要介绍使用Python和OpenCV库实现的实时颜色识别系统,这个系统能够通过摄像头捕捉视频流,并在视频中指定区域内识别主要颜色(红... 目录一、引言二、系统概述三、代码解析1. 导入库2. 颜色识别函数3. 主程序循环四、HSV色彩空间详解

PostgreSQL中MVCC 机制的实现

《PostgreSQL中MVCC机制的实现》本文主要介绍了PostgreSQL中MVCC机制的实现,通过多版本数据存储、快照隔离和事务ID管理实现高并发读写,具有一定的参考价值,感兴趣的可以了解一下... 目录一 MVCC 基本原理python1.1 MVCC 核心概念1.2 与传统锁机制对比二 Postg

SpringBoot整合Flowable实现工作流的详细流程

《SpringBoot整合Flowable实现工作流的详细流程》Flowable是一个使用Java编写的轻量级业务流程引擎,Flowable流程引擎可用于部署BPMN2.0流程定义,创建这些流程定义的... 目录1、流程引擎介绍2、创建项目3、画流程图4、开发接口4.1 Java 类梳理4.2 查看流程图4

C++中零拷贝的多种实现方式

《C++中零拷贝的多种实现方式》本文主要介绍了C++中零拷贝的实现示例,旨在在减少数据在内存中的不必要复制,从而提高程序性能、降低内存使用并减少CPU消耗,零拷贝技术通过多种方式实现,下面就来了解一下... 目录一、C++中零拷贝技术的核心概念二、std::string_view 简介三、std::stri

Python常用命令提示符使用方法详解

《Python常用命令提示符使用方法详解》在学习python的过程中,我们需要用到命令提示符(CMD)进行环境的配置,:本文主要介绍Python常用命令提示符使用方法的相关资料,文中通过代码介绍的... 目录一、python环境基础命令【Windows】1、检查Python是否安装2、 查看Python的安

C++高效内存池实现减少动态分配开销的解决方案

《C++高效内存池实现减少动态分配开销的解决方案》C++动态内存分配存在系统调用开销、碎片化和锁竞争等性能问题,内存池通过预分配、分块管理和缓存复用解决这些问题,下面就来了解一下... 目录一、C++内存分配的性能挑战二、内存池技术的核心原理三、主流内存池实现:TCMalloc与Jemalloc1. TCM

OpenCV实现实时颜色检测的示例

《OpenCV实现实时颜色检测的示例》本文主要介绍了OpenCV实现实时颜色检测的示例,通过HSV色彩空间转换和色调范围判断实现红黄绿蓝颜色检测,包含视频捕捉、区域标记、颜色分析等功能,具有一定的参考... 目录一、引言二、系统概述三、代码解析1. 导入库2. 颜色识别函数3. 主程序循环四、HSV色彩空间

Python实例题之pygame开发打飞机游戏实例代码

《Python实例题之pygame开发打飞机游戏实例代码》对于python的学习者,能够写出一个飞机大战的程序代码,是不是感觉到非常的开心,:本文主要介绍Python实例题之pygame开发打飞机... 目录题目pygame-aircraft-game使用 Pygame 开发的打飞机游戏脚本代码解释初始化部

Python实现精准提取 PDF中的文本,表格与图片

《Python实现精准提取PDF中的文本,表格与图片》在实际的系统开发中,处理PDF文件不仅限于读取整页文本,还有提取文档中的表格数据,图片或特定区域的内容,下面我们来看看如何使用Python实... 目录安装 python 库提取 PDF 文本内容:获取整页文本与指定区域内容获取页面上的所有文本内容获取

基于Python实现一个Windows Tree命令工具

《基于Python实现一个WindowsTree命令工具》今天想要在Windows平台的CMD命令终端窗口中使用像Linux下的tree命令,打印一下目录结构层级树,然而还真有tree命令,但是发现... 目录引言实现代码使用说明可用选项示例用法功能特点添加到环境变量方法一:创建批处理文件并添加到PATH1