【数据结构】反转单向链表的方法之头插法(含原理讲解及代码实现)

本文主要是介绍【数据结构】反转单向链表的方法之头插法(含原理讲解及代码实现),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

将单向链表进行反转的方法很多,这里我们讲解一种比较简单的方法——头插法

目录

为什么头插法要用到三个指针?

第一个指针的用途

第二个指针的用途 

双指针为什么不能反转链表?

 第三个指针的用途

反转链表小结及全过程图示

反转链表代码实现

函数实现

整体项目实现

头文件其他函数

源文件

执行结果


为什么头插法要用到三个指针?

可能有的人听过这个方法,听说这个方法要用到三个指针,但是不知道为什么,接下来我会用一道实题,来为大家进行细致的讲解,方便大家明白其中的原理以及代码实现中的一些细节。

上课啦斗图表情包-表情uilhjf-爱斗图

例:现有一个单向链表,节点顺序为A->B->C->D->E,请你用某种方法将该链表内节点顺序反转为E->D->C->B->A

首先,我们定义一个结构体,我们将其中的存放的数据命名为val,存放的指针命名为next 

//定义一个结构体
struct node
{int val;struct node* next;
}List;

第一个指针的用途

既然要反转链表,我们自然要改变next的指向,就这道题而言,我们来实际操作一下,我们来改变一下A中next的指向,我们将A中next的指向改为NULL,该过程如下图所示

第一个问题出现了,由于A的next指向发生了改变,我们无法再找到节点B,链表中其他后续节点的next指向自然也就无法发生改变。

我们需要一个指针,来找到next指向发生改变的节点的后一个节点,以对后续节点进行操作,这句话看着有点绕啊。

举个栗子,在上面这个图中,A里面的next指针的指向发生了改变,我们需要用一个指针,来指向A后面的这个B,在这里我们将这个指针命名为pbehind,如下图所示

自此,第一个指针诞生了! 

第二个指针的用途 

 接着我们对B中的next指向进行改变,但是第二个问题出现了,B后面只有C、D、E啊,我找不到A啊,那咋办呢?

这时候我们就需要第二个指针了,我们需要他指向即将进行next指向改变的节点的前一个节点

在这道题中,也就是B的指向即将改变,我们需要用一个指针,来指向B前面的A,这里我们将这个指针命名为pfront,如下图所示

自此,第二个指针诞生了! 

双指针为什么不能反转链表?

 这时候可能有些同学有这种感觉 

 “ 诶,你等会!   我怎么感觉这两个指针就能搞定了啊!”

格局小了是什么意思? - 天晴科普网

 那好,我们就用这两个指针来进行一下实际操作,看看是不是真的能完成题目的要求,具体过程如下图所示

 乍一看,这不好得很吗!这博主还非说要用三个指针,真是菜,一点理解都没有

食物二创,我可能不...但你是真的...相关表情包,表情包专辑 - 求表情网,斗图从此不求人!

别着急,我写几行伪代码,再给你配几个图,你就知道咋回事了

就拿C到D这段举例吧,一开始链表是这样的

 我们来写几行伪代码,来改变C中next的指向

//令pbehind移动到节点D上
pbehind->next = D;
//断开C与D的链接
C->next = pfront;

 第三个指针的用途

这第三个问题出现了,指针pfront该怎么过去,这时候就会出现这种情况,如下图所示

指针pfront根本就没法过去,pfront指向的是B,而B的next指向的是A,可他要移动到C去,指针pfront被永远的困在了B那里,而我们知道,只靠一个指针是没办法完成链表反转的 

吴孟达:演员就是骗子,我骗了几代人_凤凰网

自此,第三个指针诞生了!

 它需要承担起帮助pfront找到被指向的节点,在这个图中,他要做到的就是帮助pfront找到C,这里我们将这个指针命名为ptemp,如下图所示

 接下来,我们再写几行伪代码,来改变C中next的指向

//将节点C中的next指向改为节点B
ptemp->next = pfront;//将pfront通过ptemp移动到节点C上
pfront = ptemp;//将ptemp通过pbehind移动到节点D上
//以在下一次进行节点D的next指向改变,同时下一次能够让pfront移动到节点D上
ptemp = pbehind;//令pbehind移动到节点E上,下一次能够让ptemp移动到节点E上
pbehind->next = E;

 执行完成后得到的结果如下图所示

反转链表小结及全过程图示

我们来粗分一下反转链表的两个步骤:

  1. 转向,也就是改变next的指向
  2. 三指针平移,先pfront,接着是ptemp,最后是pbehind

自此,反转链表的要求我们已经全部满足了,我们来看一下三指针反转题目中所给链表的全过程,如下图所示

反转链表代码实现

函数实现

PS:大家最好把功能函数写在头文件中,不要写在main函数中,main函数是用来执行功能函数的

int traversal_head_insert(node** pphead)
//这里用到二级指针是因为要改变头节点的位置
{//如果该链表为空或者链表中只有一个结点,直接退出if (!(*pphead)||(*pphead)->next == NULL){return 0;}//如果链表只有两个结点else if ((*pphead)->next->next == NULL){(*pphead)->next->next = *pphead;(*pphead)->next = NULL;return 0;}//如果链表有大于等于三个节点else{//p1是pfront,p2是ptemp,p3是pbehindnode* p1 = NULL;node* p2 = (*pphead);node* p3 = (*pphead)->next;while (p3 != NULL){//断开转向(*pphead)->next = p1;*pphead = p3;//平移三个指针p1 = p2;p2 = p3;p3 = p3->next;}//当p3==NULL时,说明链表中只有两个节点未进行反转,此时已经不需要再次平移//此时p2指向原链表的尾结点(*pphead)->next = p1;*pphead = p2;return 0;}
}

整体项目实现

头文件其他函数

#pragma once
#include<iostream>
using namespace std;struct node
{int data;struct node* next;
}List;//链表初始化(可以有虚拟头节点,有尾结点,头结点)
void List_Create(node** pphead)
{node* ptemp = NULL;node* ptail = (node*)malloc(sizeof(List));ptail->next = NULL;int length;//链表的长度cout << "请输入你想要初始化的链表的长度:";cin >> length;int val;//链表的结点值cout << "请依次输入链表中的值:";while (length){cin >> val;ptemp = (node*)malloc(sizeof(node));ptemp->data = val; ptemp->next = NULL;//结点的初始化if (*pphead == NULL)//如果链表为空,即输入链表的第一个值{*pphead = ptemp;}else//如果链表非空{ptail->next = ptemp;}ptail = ptemp;//ptail作为尾结点length--;}cout << "链表初始化完成" << endl;return;
}//链表打印
void list_print(node* phead)
{node* pphead = phead;cout << "该链表打印结果为:" << endl;while (pphead){cout << pphead->data << "->";pphead = pphead->next;}cout << endl << "该链表打印完成" << endl;return;
}

源文件

#include"List_Function.h"
using namespace std;int main()
{//创建一个头节点node* phead = (node*)malloc(sizeof(List));phead = NULL;List_Create(&phead);list_print(phead);cout << "此时将链表进行翻转" << endl;traversal_head_insert(&phead);list_print(phead);
}

执行结果

 大家有什么地方没有看懂的话,可以在评论区留言给我,咱要力所能及的话就帮大家解答解答

今天的学习记录到此结束啦,咱们下篇文章见,ByeBye!

这篇关于【数据结构】反转单向链表的方法之头插法(含原理讲解及代码实现)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/438606

相关文章

Java中流式并行操作parallelStream的原理和使用方法

《Java中流式并行操作parallelStream的原理和使用方法》本文详细介绍了Java中的并行流(parallelStream)的原理、正确使用方法以及在实际业务中的应用案例,并指出在使用并行流... 目录Java中流式并行操作parallelStream0. 问题的产生1. 什么是parallelS

MySQL数据库双机热备的配置方法详解

《MySQL数据库双机热备的配置方法详解》在企业级应用中,数据库的高可用性和数据的安全性是至关重要的,MySQL作为最流行的开源关系型数据库管理系统之一,提供了多种方式来实现高可用性,其中双机热备(M... 目录1. 环境准备1.1 安装mysql1.2 配置MySQL1.2.1 主服务器配置1.2.2 从

C++中unordered_set哈希集合的实现

《C++中unordered_set哈希集合的实现》std::unordered_set是C++标准库中的无序关联容器,基于哈希表实现,具有元素唯一性和无序性特点,本文就来详细的介绍一下unorder... 目录一、概述二、头文件与命名空间三、常用方法与示例1. 构造与析构2. 迭代器与遍历3. 容量相关4

Java中Redisson 的原理深度解析

《Java中Redisson的原理深度解析》Redisson是一个高性能的Redis客户端,它通过将Redis数据结构映射为Java对象和分布式对象,实现了在Java应用中方便地使用Redis,本文... 目录前言一、核心设计理念二、核心架构与通信层1. 基于 Netty 的异步非阻塞通信2. 编解码器三、

C++中悬垂引用(Dangling Reference) 的实现

《C++中悬垂引用(DanglingReference)的实现》C++中的悬垂引用指引用绑定的对象被销毁后引用仍存在的情况,会导致访问无效内存,下面就来详细的介绍一下产生的原因以及如何避免,感兴趣... 目录悬垂引用的产生原因1. 引用绑定到局部变量,变量超出作用域后销毁2. 引用绑定到动态分配的对象,对象

SpringBoot基于注解实现数据库字段回填的完整方案

《SpringBoot基于注解实现数据库字段回填的完整方案》这篇文章主要为大家详细介绍了SpringBoot如何基于注解实现数据库字段回填的相关方法,文中的示例代码讲解详细,感兴趣的小伙伴可以了解... 目录数据库表pom.XMLRelationFieldRelationFieldMapping基础的一些代

Java HashMap的底层实现原理深度解析

《JavaHashMap的底层实现原理深度解析》HashMap基于数组+链表+红黑树结构,通过哈希算法和扩容机制优化性能,负载因子与树化阈值平衡效率,是Java开发必备的高效数据结构,本文给大家介绍... 目录一、概述:HashMap的宏观结构二、核心数据结构解析1. 数组(桶数组)2. 链表节点(Node

Java AOP面向切面编程的概念和实现方式

《JavaAOP面向切面编程的概念和实现方式》AOP是面向切面编程,通过动态代理将横切关注点(如日志、事务)与核心业务逻辑分离,提升代码复用性和可维护性,本文给大家介绍JavaAOP面向切面编程的概... 目录一、AOP 是什么?二、AOP 的核心概念与实现方式核心概念实现方式三、Spring AOP 的关

Python版本信息获取方法详解与实战

《Python版本信息获取方法详解与实战》在Python开发中,获取Python版本号是调试、兼容性检查和版本控制的重要基础操作,本文详细介绍了如何使用sys和platform模块获取Python的主... 目录1. python版本号获取基础2. 使用sys模块获取版本信息2.1 sys模块概述2.1.1

Python实现字典转字符串的五种方法

《Python实现字典转字符串的五种方法》本文介绍了在Python中如何将字典数据结构转换为字符串格式的多种方法,首先可以通过内置的str()函数进行简单转换;其次利用ison.dumps()函数能够... 目录1、使用json模块的dumps方法:2、使用str方法:3、使用循环和字符串拼接:4、使用字符