ICCV 2021 | MultiSports:面向体育运动场景的细粒度多人时空动作检测数据集

本文主要是介绍ICCV 2021 | MultiSports:面向体育运动场景的细粒度多人时空动作检测数据集,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

今天介绍一个我们新提出的时空动作检测数据集MultiSports,同时也是DeeperAction比赛的赛道二。首先介绍一下什么是时空动作检测任务 (Spatio-Temporal Action Detection): 输入一段未剪辑的视频 (untrimmed video),输出视频中人物的动作类别、动作发生的时序区间以及在此区间内的人物框。

现有数据集主要分为两大类:

  • 以UCF101-24和JHMDB为代表的密集标注数据集 (25FPS),这类数据集每个视频只有一种动作,大部分视频是单人在做一些语义简单的重复动作,动作类别与背景高度相关。

  • 以AVA为代表的稀疏标注数据集 (1FPS),由于稀疏标注,他们没有给出明确的动作边界,现有的方法更像是instance级别的动作识别,弱化时序定位;同时动作类别是日常的原子动作,运动速度慢、形变小,跟踪难度较低,分类不需要复杂的人与物与环境的建模和推理。

论文信息

论文链接:MultiSports: A Multi-Person Video Dataset of Spatio-Temporally Localized Sports Actions

比赛主页链接:DeeperAction/MultiSports

GitHub链接:MCG-NJU/MultiSports

研究动机

基于对现有数据集的分析,我们认为他们不能满足现实应用对时空动作检测技术的需求,需要提出一个新的数据集来推动这个领域的进步,我们希望这个数据集满足以下特征:

  • 多人:在同一场景下,不同的人做不同的细粒度动作,减少背景提供的信息。

  • 分类:细粒度动作类别,定义准确,需要刻画人物本身动作,长时信息建模,人与人、与物、与环境的关系建模,推理。

  • 时序:动作边界定义准确。

  • 跟踪:运动速度快,形变大,存在遮挡。

基于以上特点我们以集体运动作为数据集背景,选择了足球、篮球、排球、健美操四种运动共66种动作。

应用场景

除了学术研究,我们的MultiSports还有很多的落地场景。结合Re-ID技术,球类领域我们可以做每位球员的技术统计 (目前是人工统计),例如在篮球中如果一个人接到队友传球之后没有任何其他动作直接投篮成功,则记为传球队友的一次助攻,如果一个人在投篮时有人来干扰投篮,那么这个投篮的难度指数会随着干扰投篮人数的增多而增大,这位球员成功后投篮技术评估则会更高,这些为制定训练计划、比赛策略和俱乐部之间球员交易提供信息,同时也可用于比赛解说、特效制作等;多人操领域我们可以做AI裁判,对运动员表现进行打分,在即将到来的东京奥运会,已将AI裁判引入了单人体操运动。我们相信竞技体育是计算机视觉一个很好的落地场景,而时空动作检测是其中一个很重要的技术。

标注手册

这篇关于ICCV 2021 | MultiSports:面向体育运动场景的细粒度多人时空动作检测数据集的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/438447

相关文章

MySQL常用字符串函数示例和场景介绍

《MySQL常用字符串函数示例和场景介绍》MySQL提供了丰富的字符串函数帮助我们高效地对字符串进行处理、转换和分析,本文我将全面且深入地介绍MySQL常用的字符串函数,并结合具体示例和场景,帮你熟练... 目录一、字符串函数概述1.1 字符串函数的作用1.2 字符串函数分类二、字符串长度与统计函数2.1

SpringBoot多环境配置数据读取方式

《SpringBoot多环境配置数据读取方式》SpringBoot通过环境隔离机制,支持properties/yaml/yml多格式配置,结合@Value、Environment和@Configura... 目录一、多环境配置的核心思路二、3种配置文件格式详解2.1 properties格式(传统格式)1.

解决pandas无法读取csv文件数据的问题

《解决pandas无法读取csv文件数据的问题》本文讲述作者用Pandas读取CSV文件时因参数设置不当导致数据错位,通过调整delimiter和on_bad_lines参数最终解决问题,并强调正确参... 目录一、前言二、问题复现1. 问题2. 通过 on_bad_lines=‘warn’ 跳过异常数据3

Java Stream流之GroupBy的用法及应用场景

《JavaStream流之GroupBy的用法及应用场景》本教程将详细介绍如何在Java中使用Stream流的groupby方法,包括基本用法和一些常见的实际应用场景,感兴趣的朋友一起看看吧... 目录Java Stream流之GroupBy的用法1. 前言2. 基础概念什么是 GroupBy?Stream

C#监听txt文档获取新数据方式

《C#监听txt文档获取新数据方式》文章介绍通过监听txt文件获取最新数据,并实现开机自启动、禁用窗口关闭按钮、阻止Ctrl+C中断及防止程序退出等功能,代码整合于主函数中,供参考学习... 目录前言一、监听txt文档增加数据二、其他功能1. 设置开机自启动2. 禁止控制台窗口关闭按钮3. 阻止Ctrl +

java如何实现高并发场景下三级缓存的数据一致性

《java如何实现高并发场景下三级缓存的数据一致性》这篇文章主要为大家详细介绍了java如何实现高并发场景下三级缓存的数据一致性,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 下面代码是一个使用Java和Redisson实现的三级缓存服务,主要功能包括:1.缓存结构:本地缓存:使

C++中detach的作用、使用场景及注意事项

《C++中detach的作用、使用场景及注意事项》关于C++中的detach,它主要涉及多线程编程中的线程管理,理解detach的作用、使用场景以及注意事项,对于写出高效、安全的多线程程序至关重要,下... 目录一、什么是join()?它的作用是什么?类比一下:二、join()的作用总结三、join()怎么

在MySQL中实现冷热数据分离的方法及使用场景底层原理解析

《在MySQL中实现冷热数据分离的方法及使用场景底层原理解析》MySQL冷热数据分离通过分表/分区策略、数据归档和索引优化,将频繁访问的热数据与冷数据分开存储,提升查询效率并降低存储成本,适用于高并发... 目录实现冷热数据分离1. 分表策略2. 使用分区表3. 数据归档与迁移在mysql中实现冷热数据分

C#解析JSON数据全攻略指南

《C#解析JSON数据全攻略指南》这篇文章主要为大家详细介绍了使用C#解析JSON数据全攻略指南,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录一、为什么jsON是C#开发必修课?二、四步搞定网络JSON数据1. 获取数据 - HttpClient最佳实践2. 动态解析 - 快速

MyBatis-Plus通用中等、大量数据分批查询和处理方法

《MyBatis-Plus通用中等、大量数据分批查询和处理方法》文章介绍MyBatis-Plus分页查询处理,通过函数式接口与Lambda表达式实现通用逻辑,方法抽象但功能强大,建议扩展分批处理及流式... 目录函数式接口获取分页数据接口数据处理接口通用逻辑工具类使用方法简单查询自定义查询方法总结函数式接口