ICCV 2021 | MultiSports:面向体育运动场景的细粒度多人时空动作检测数据集

本文主要是介绍ICCV 2021 | MultiSports:面向体育运动场景的细粒度多人时空动作检测数据集,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

今天介绍一个我们新提出的时空动作检测数据集MultiSports,同时也是DeeperAction比赛的赛道二。首先介绍一下什么是时空动作检测任务 (Spatio-Temporal Action Detection): 输入一段未剪辑的视频 (untrimmed video),输出视频中人物的动作类别、动作发生的时序区间以及在此区间内的人物框。

现有数据集主要分为两大类:

  • 以UCF101-24和JHMDB为代表的密集标注数据集 (25FPS),这类数据集每个视频只有一种动作,大部分视频是单人在做一些语义简单的重复动作,动作类别与背景高度相关。

  • 以AVA为代表的稀疏标注数据集 (1FPS),由于稀疏标注,他们没有给出明确的动作边界,现有的方法更像是instance级别的动作识别,弱化时序定位;同时动作类别是日常的原子动作,运动速度慢、形变小,跟踪难度较低,分类不需要复杂的人与物与环境的建模和推理。

论文信息

论文链接:MultiSports: A Multi-Person Video Dataset of Spatio-Temporally Localized Sports Actions

比赛主页链接:DeeperAction/MultiSports

GitHub链接:MCG-NJU/MultiSports

研究动机

基于对现有数据集的分析,我们认为他们不能满足现实应用对时空动作检测技术的需求,需要提出一个新的数据集来推动这个领域的进步,我们希望这个数据集满足以下特征:

  • 多人:在同一场景下,不同的人做不同的细粒度动作,减少背景提供的信息。

  • 分类:细粒度动作类别,定义准确,需要刻画人物本身动作,长时信息建模,人与人、与物、与环境的关系建模,推理。

  • 时序:动作边界定义准确。

  • 跟踪:运动速度快,形变大,存在遮挡。

基于以上特点我们以集体运动作为数据集背景,选择了足球、篮球、排球、健美操四种运动共66种动作。

应用场景

除了学术研究,我们的MultiSports还有很多的落地场景。结合Re-ID技术,球类领域我们可以做每位球员的技术统计 (目前是人工统计),例如在篮球中如果一个人接到队友传球之后没有任何其他动作直接投篮成功,则记为传球队友的一次助攻,如果一个人在投篮时有人来干扰投篮,那么这个投篮的难度指数会随着干扰投篮人数的增多而增大,这位球员成功后投篮技术评估则会更高,这些为制定训练计划、比赛策略和俱乐部之间球员交易提供信息,同时也可用于比赛解说、特效制作等;多人操领域我们可以做AI裁判,对运动员表现进行打分,在即将到来的东京奥运会,已将AI裁判引入了单人体操运动。我们相信竞技体育是计算机视觉一个很好的落地场景,而时空动作检测是其中一个很重要的技术。

标注手册

这篇关于ICCV 2021 | MultiSports:面向体育运动场景的细粒度多人时空动作检测数据集的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/438447

相关文章

SQL Server修改数据库名及物理数据文件名操作步骤

《SQLServer修改数据库名及物理数据文件名操作步骤》在SQLServer中重命名数据库是一个常见的操作,但需要确保用户具有足够的权限来执行此操作,:本文主要介绍SQLServer修改数据... 目录一、背景介绍二、操作步骤2.1 设置为单用户模式(断开连接)2.2 修改数据库名称2.3 查找逻辑文件名

OpenCV实现实时颜色检测的示例

《OpenCV实现实时颜色检测的示例》本文主要介绍了OpenCV实现实时颜色检测的示例,通过HSV色彩空间转换和色调范围判断实现红黄绿蓝颜色检测,包含视频捕捉、区域标记、颜色分析等功能,具有一定的参考... 目录一、引言二、系统概述三、代码解析1. 导入库2. 颜色识别函数3. 主程序循环四、HSV色彩空间

canal实现mysql数据同步的详细过程

《canal实现mysql数据同步的详细过程》:本文主要介绍canal实现mysql数据同步的详细过程,本文通过实例图文相结合给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的... 目录1、canal下载2、mysql同步用户创建和授权3、canal admin安装和启动4、canal

Python主动抛出异常的各种用法和场景分析

《Python主动抛出异常的各种用法和场景分析》在Python中,我们不仅可以捕获和处理异常,还可以主动抛出异常,也就是以类的方式自定义错误的类型和提示信息,这在编程中非常有用,下面我将详细解释主动抛... 目录一、为什么要主动抛出异常?二、基本语法:raise关键字基本示例三、raise的多种用法1. 抛

使用SpringBoot整合Sharding Sphere实现数据脱敏的示例

《使用SpringBoot整合ShardingSphere实现数据脱敏的示例》ApacheShardingSphere数据脱敏模块,通过SQL拦截与改写实现敏感信息加密存储,解决手动处理繁琐及系统改... 目录痛点一:痛点二:脱敏配置Quick Start——Spring 显示配置:1.引入依赖2.创建脱敏

Spring组件实例化扩展点之InstantiationAwareBeanPostProcessor使用场景解析

《Spring组件实例化扩展点之InstantiationAwareBeanPostProcessor使用场景解析》InstantiationAwareBeanPostProcessor是Spring... 目录一、什么是InstantiationAwareBeanPostProcessor?二、核心方法解

详解如何使用Python构建从数据到文档的自动化工作流

《详解如何使用Python构建从数据到文档的自动化工作流》这篇文章将通过真实工作场景拆解,为大家展示如何用Python构建自动化工作流,让工具代替人力完成这些数字苦力活,感兴趣的小伙伴可以跟随小编一起... 目录一、Excel处理:从数据搬运工到智能分析师二、PDF处理:文档工厂的智能生产线三、邮件自动化:

Java 枚举的基本使用方法及实际使用场景

《Java枚举的基本使用方法及实际使用场景》枚举是Java中一种特殊的类,用于定义一组固定的常量,枚举类型提供了更好的类型安全性和可读性,适用于需要定义一组有限且固定的值的场景,本文给大家介绍Jav... 目录一、什么是枚举?二、枚举的基本使用方法定义枚举三、实际使用场景代替常量状态机四、更多用法1.实现接

Python数据分析与可视化的全面指南(从数据清洗到图表呈现)

《Python数据分析与可视化的全面指南(从数据清洗到图表呈现)》Python是数据分析与可视化领域中最受欢迎的编程语言之一,凭借其丰富的库和工具,Python能够帮助我们快速处理、分析数据并生成高质... 目录一、数据采集与初步探索二、数据清洗的七种武器1. 缺失值处理策略2. 异常值检测与修正3. 数据

pandas实现数据concat拼接的示例代码

《pandas实现数据concat拼接的示例代码》pandas.concat用于合并DataFrame或Series,本文主要介绍了pandas实现数据concat拼接的示例代码,具有一定的参考价值,... 目录语法示例:使用pandas.concat合并数据默认的concat:参数axis=0,join=