Matlab中LMI(线性矩阵不等式)工具箱使用例子

2023-11-30 16:32

本文主要是介绍Matlab中LMI(线性矩阵不等式)工具箱使用例子,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

我搜出来的都是一些简单的算例,并且机会没有中文教程,我在这里就斗胆把自己的体会写出来,试着给大家提供一点参考。


LMI:Linear Matrix Inequality,就是线性矩阵不等式。
在Matlab当中,我们可以采用图形界面的lmiedit命令,来调用GUI接口,但是我认为采用程序的方式更方便(也因为我不懂这个lmiedit的GUI)。
对于LMI Lab, 其中有三种求解器(solver): feasp,mincx和gevp。
每个求解器针对不同的问题:
feasp:解决可行性问题(feasibility problem),例如:A(x)<b(x)。< font="">

mincx:在线性矩阵不等式的限制下解决最小化问题(Minimization of a linear objective under LMI constraints),例如最小化c'x,在限制条件A(x) < B(x)下。

gevp:解决广义特征值最小化问题。例如:最小化lambda,在0<b(x),a(x)<lamba*b(x)限制条件下。< font="">

要解决一个LMI问题,首要的就是要把线性矩阵不等式表示出来。


对于以下类型的任意的LMI问题


N' * L(X1, . . . , XK) * N < M' * R(X1, . . . , XK) * M


其中X1, . . . , XK是结构已经事先确定的矩阵变量。左侧和右侧的外部因子(outer factors)N和M是给定的具有相同维数的矩阵。
左侧和右侧的内部因子(inner factors)L(.)和R(.)是具有相同结构的对称块矩阵。每一个块由X1, . . . , XK以及它们的转置组合而成形成的。


解决LMI问题的步骤有两个:


1、定义维数以及每一个矩阵的结构,也就是定义X1, . . . , XK。

2、描述每一个LMI的每一项内容(Describe the term content of each LMI)

此处介绍两个术语:

矩阵变量(Matrix Variables):例如你要求解X满足A(x)<b(x),那么x就叫做矩阵< font="">

变量。

项(Terms):项是常量或者变量(Terms are either constant or variable)。

常项(Constant Terms)是确定的矩阵。可变项(Variable Terms)是哪些含有矩阵变

量的项,例如:X*A, X*C'。如果是X*A + X*C',那么记得要把它当成两项来处理。

好了废话不说了,让我们来看个例子吧(下面是一线性时滞系统)。

 

 

针对这个式子,如果存在满足如下LMI的正矩阵(positive-define)的Q,S1,S2和矩阵M,那么我们就称作

 

该系统为H-inf渐进稳定的,并且gammar是上限。

 

该论文的地址为:论文原文地址

H∞ state feedback control for generalized continuous/discrete time-delay system

 

该论文的算例为:

 

 

我们要实现的就利用LMI进行求解,验证论文结果。

 

首先我们要用setlmis([])命令初始化一个LMI系统。

 

接下来,我们就要设定矩阵变量了。采用函数为lmivar

 

语法:X = lmivar(type,struct)

type=1: 定义块对角的对称矩阵。 每一个对角块或者是全矩阵<任意对称矩阵>,标量<单位矩阵的乘积>,或者是零阵。

如果X有R个对角块,那么后面这个struct就应该是一个Rx2阶的的矩阵,在此矩阵中,struct(r,1)表示第r个块的大小,struct(r,2) 表示第r个块的类型<1--全矩阵,0--标量,-1--零阵)。

比如一个矩阵有两个对角块,其中一个是2x2的全对称矩阵,第二个是1x1的一个标量,那么该矩阵变量应该表示为X = lmivar(1, [2 1; 1 0]) 。


type=2: mxn阶的矩阵,只需要写作struct = [m,n]即可。


type=3: 其它类型。针对类型3,X的每一个条目(each entry of X)被定义为0或者是+(-)xn,此处xn代表了第n个决策变量。

那么针对我们的例子,我们如此定义变量:

% Q is a symmetric matrix, has a block size of 2 and this block is symmetric 
Q = lmivar(1, [2 1]);

% S1 a symmeric matrix, size 2 
S1 = lmivar(1, [2 1]);

% S2 is 1 by 1 matrix
S2 = lmivar(1, [1 0]);

% Type of 2, size 1 by 2 
M = lmivar(2, [1 2]);

定义完成变量之后,我们就该用lmiterm来描述LMI中的每一个项了。Matlab的官方文档提示我们,如果要描述一个LMI只需要描述上三角或者下三角元素就可以了,否则会描述成另一个LMI。

When describing an LMI with several blocks, remember to specify only the terms in the blocks on or below the diagonal (or equivalently, only the terms in blocks on or above the diagonal).

语法为:lmiterm(termID,A,B,flag)

termID是一个四维整数向量,来表示该项的位置和包含了哪些矩阵变量。

termID(1)可以为+p或者-p,+p代表了这个项位于第p个线性矩阵不等式的左边,-p代表了这个项位于第p个线性矩阵不等式的右边。注意:按照惯例来讲,左边通常指较小的那边。

termID(2:3):

1、对于外部变量来说,取值为[0,0];

2、对于左边或者右边的内部变量来说,如果该项在(i,j)位置,取值[i,j]

termID(4):

1、对于外部变量,取值为0

2、对于A*X*B,取值X

3、对于A*X'*B,取值-X

flag(可选,值为s):

因为:(A*X*B) + (A*X*B)T = A*X*B + B'*X'*A',所以采用s来进行简写。

比如:针对A*X + X'*A'

我们采用笨方法:

lmiterm([1 1 1 X],A,1) 
lmiterm([1 1 1 -X],1,A')

那么简写就是lmiterm([1 1 1 X],A,1,'s')

接下来我们就看该论文中的算例吧:(1,1)位置是

-Q+Bd*S2*Bd'+Ad*S1*Ad';

我们应该表示为:

% pos in (1, 1)
lmiterm([1 1 1 Q], -1, 1);
lmiterm([1 1 1 S2], Bd, Bd');
lmiterm([1 1 1 S1], Ad, Ad');

其它位置仿照写就行了,不懂了多看帮助文档。

把每一个项都定义以后,要记得

lmis = getlmis;

[tmin, feas] = feasp(lmis)

getlmis:是在完成定义变量和项之后,LMI系统的内部表示就可以通过此命令获得(After completing the description of a given LMI system with lmivar and lmiterm, its internal representation lmisys is obtained with the command)。

feasp是调用feasp求解器,看有没有可行解。feas就是可行解。

下面我把代码贴上去,那些常数矩阵都在此源程序中定义了。

A = [2 1; 0 1];
Ad = [0.2 0.1; 0 0.1];
B1 = [0.1 0.1]';
B2 = [1 1]';
Bd = [0.1 0.1]';

C = [1, 1];
Cd = [0.1, 0.1];

D11 = 0.1;
D12 = 1;
Dd = 0.1;

gammar = 1;

% Initial a LMI system
setlmis([]);

% Define Variables

% Q is a symmetric matrix, has a block size of 2 and this block is symmetric 
Q = lmivar(1, [2 1]);

% S1 a symmeric matrix, size 2 
S1 = lmivar(1, [2 1]);

% S2 is 1 by 1 matrix
S2 = lmivar(1, [1 0]);

% Type of 2, size 1 by 2 
M = lmivar(2, [1 2]);

% Q, S1, S2 > 0
lmiterm([-2 1 1 Q], 1, 1);

lmiterm([-3 1 1 S1], 1, 1);

lmiterm([-4 1 1 S2], 1, 1);

% pos in (1, 1)
lmiterm([1 1 1 Q], -1, 1);
lmiterm([1 1 1 S2], Bd, Bd');
lmiterm([1 1 1 S1], Ad, Ad');

% pos (1, 2)
lmiterm([1 1 2 Q], A, 1);
lmiterm([1 1 2 M], B2, 1);

% pos(1, 3)
lmiterm([1 1 3 0], B1);

% pos(1, 4)
lmiterm([1 1 4 S2], Bd, Dd');
lmiterm([1 1 4 S1], Ad, Cd');


% pos(2, 2)
lmiterm([1 2 2 Q], -1, 1);

% pos(2, 4)
lmiterm([1 2 4 Q], 1, C');

lmiterm([1 2 4 -M], 1, D12');

% pos(2, 5)
lmiterm([1 2 5 -M], 1, 1);

% pos(2, 6)
lmiterm([1 2 6 Q], 1, 1);

% pos(3, 3)
lmiterm([1 3 3 0], -(gammar^2));

% pos(3, 4)
lmiterm([1 3 4 0], D11');

% pos(4, 4)
lmiterm([1 4 4 0], -1);
lmiterm([1 4 4 S1], Cd, Cd');
lmiterm([1 4 4 S2], Dd, Dd');


lmiterm([1 5 5 S2], -1, 1);

lmiterm([1 6 6 S1], -1, 1);

lmis = getlmis;

[tmin, feas] = feasp(lmis)

 

 

运行后,就调用dec2mat把决策变量转化为矩阵形式。

Q = dec2mat(lmis, feas, Q)

Q =

    1.9253   -2.2338
   -2.2338    9.1054

可以看到,和论文中的一样。

这篇关于Matlab中LMI(线性矩阵不等式)工具箱使用例子的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/437734

相关文章

Python使用FastAPI实现大文件分片上传与断点续传功能

《Python使用FastAPI实现大文件分片上传与断点续传功能》大文件直传常遇到超时、网络抖动失败、失败后只能重传的问题,分片上传+断点续传可以把大文件拆成若干小块逐个上传,并在中断后从已完成分片继... 目录一、接口设计二、服务端实现(FastAPI)2.1 运行环境2.2 目录结构建议2.3 serv

Spring Security简介、使用与最佳实践

《SpringSecurity简介、使用与最佳实践》SpringSecurity是一个能够为基于Spring的企业应用系统提供声明式的安全访问控制解决方案的安全框架,本文给大家介绍SpringSec... 目录一、如何理解 Spring Security?—— 核心思想二、如何在 Java 项目中使用?——

springboot中使用okhttp3的小结

《springboot中使用okhttp3的小结》OkHttp3是一个JavaHTTP客户端,可以处理各种请求类型,比如GET、POST、PUT等,并且支持高效的HTTP连接池、请求和响应缓存、以及异... 在 Spring Boot 项目中使用 OkHttp3 进行 HTTP 请求是一个高效且流行的方式。

Java使用Javassist动态生成HelloWorld类

《Java使用Javassist动态生成HelloWorld类》Javassist是一个非常强大的字节码操作和定义库,它允许开发者在运行时创建新的类或者修改现有的类,本文将简单介绍如何使用Javass... 目录1. Javassist简介2. 环境准备3. 动态生成HelloWorld类3.1 创建CtC

使用Python批量将.ncm格式的音频文件转换为.mp3格式的实战详解

《使用Python批量将.ncm格式的音频文件转换为.mp3格式的实战详解》本文详细介绍了如何使用Python通过ncmdump工具批量将.ncm音频转换为.mp3的步骤,包括安装、配置ffmpeg环... 目录1. 前言2. 安装 ncmdump3. 实现 .ncm 转 .mp34. 执行过程5. 执行结

Java使用jar命令配置服务器端口的完整指南

《Java使用jar命令配置服务器端口的完整指南》本文将详细介绍如何使用java-jar命令启动应用,并重点讲解如何配置服务器端口,同时提供一个实用的Web工具来简化这一过程,希望对大家有所帮助... 目录1. Java Jar文件简介1.1 什么是Jar文件1.2 创建可执行Jar文件2. 使用java

C#使用Spire.Doc for .NET实现HTML转Word的高效方案

《C#使用Spire.Docfor.NET实现HTML转Word的高效方案》在Web开发中,HTML内容的生成与处理是高频需求,然而,当用户需要将HTML页面或动态生成的HTML字符串转换为Wor... 目录引言一、html转Word的典型场景与挑战二、用 Spire.Doc 实现 HTML 转 Word1

Java中的抽象类与abstract 关键字使用详解

《Java中的抽象类与abstract关键字使用详解》:本文主要介绍Java中的抽象类与abstract关键字使用详解,本文通过实例代码给大家介绍的非常详细,感兴趣的朋友跟随小编一起看看吧... 目录一、抽象类的概念二、使用 abstract2.1 修饰类 => 抽象类2.2 修饰方法 => 抽象方法,没有

MyBatis ParameterHandler的具体使用

《MyBatisParameterHandler的具体使用》本文主要介绍了MyBatisParameterHandler的具体使用,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参... 目录一、概述二、源码1 关键属性2.setParameters3.TypeHandler1.TypeHa

Spring 中的切面与事务结合使用完整示例

《Spring中的切面与事务结合使用完整示例》本文给大家介绍Spring中的切面与事务结合使用完整示例,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考... 目录 一、前置知识:Spring AOP 与 事务的关系 事务本质上就是一个“切面”二、核心组件三、完