细聊冗余表数据一致性(架构师之路)

2023-11-30 16:08

本文主要是介绍细聊冗余表数据一致性(架构师之路),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

本文主要讨论四个问题:

(1)为什么会有冗余表的需求

(2)如何实现冗余表

(3)正反冗余表谁先执行

(4)冗余表如何保证数据的一致性

 

一、需求缘起

互联网很多业务场景的数据量很大,此时数据库架构要进行水平切分,水平切分会有一个patition key,通过patition key的查询能够直接定位到库,但是非patition key上的查询可能就需要扫描多个库了。

例如订单表,业务上对用户和商家都有订单查询需求:

Order(oid, info_detail)

T(buyer_id, seller_id, oid)

如果用buyer_id来分库,seller_id的查询就需要扫描多库。

如果用seller_id来分库,buyer_id的查询就需要扫描多库。

 

这类需求,为了做到高吞吐量低延时的查询,往往使用“数据冗余”的方式来实现,就是文章标题里说的“冗余表”

T1(buyer_id, seller_id, oid)

T2(seller_id, buyer_id, oid)

同一个数据,冗余两份,一份以buyer_id来分库,满足买家的查询需求;

一份以seller_id来分库,满足卖家的查询需求。

 

二、冗余表的实现方案

【方法一:服务同步写】


顾名思义,由服务层同步写冗余数据,如上图1-4流程:

(1)业务方调用服务,新增数据

(2)服务先插入T1数据

(3)服务再插入T2数据

(4)服务返回业务方新增数据成功

优点

(1)不复杂,服务层由单次写,变两次写

(2)数据一致性相对较高(因为双写成功才返回)

缺点

(1)请求的处理时间增加(要插入次,时间加倍)

(2)数据仍可能不一致,例如第二步写入T1完成后服务重启,则数据不会写入T2

 

如果系统对处理时间比较敏感,引出常用的第二种方案

【方法二:服务异步写】


数据的双写并不再由服务来完成,服务层异步发出一个消息,通过消息总线发送给一个专门的数据复制服务来写入冗余数据,如上图1-6流程:

(1)业务方调用服务,新增数据

(2)服务先插入T1数据

(3)服务向消息总线发送一个异步消息(发出即可,不用等返回,通常很快就能完成)

(4)服务返回业务方新增数据成功

(5)消息总线将消息投递给数据同步中心

(6)数据同步中心插入T2数据

优点

(1)请求处理时间短(只插入1次)

缺点

(1)系统的复杂性增加了,多引入了一个组件(消息总线)和一个服务(专用的数据复制服务)

(2)因为返回业务线数据插入成功时,数据还不一定插入到T2中,因此数据有一个不一致时间窗口(这个窗口很短,最终是一致的)

(3)在消息总线丢失消息时,冗余表数据会不一致

 

如果想解除“数据冗余”对系统的耦合,引出常用的第三种方案

【方法三:线下异步写】


数据的双写不再由服务层来完成,而是由线下的一个服务或者任务来完成,如上图1-6流程:

(1)业务方调用服务,新增数据

(2)服务先插入T1数据

(3)服务返回业务方新增数据成功

(4)数据会被写入到数据库的log中

(5)线下服务或者任务读取数据库的log

(6)线下服务或者任务插入T2数据

优点

(1)数据双写与业务完全解耦

(2)请求处理时间短(只插入1次)

缺点

(1)返回业务线数据插入成功时,数据还不一定插入到T2中,因此数据有一个不一致时间窗口(这个窗口很短,最终是一致的)

(2)数据的一致性依赖于线下服务或者任务的可靠性

 

上述三种方案各有优缺点,但不管哪种方案,都会面临“究竟先写T1还是先写T2”的问题?这该怎么办呢?

 

三、究竟先写正表还是反表

对于一个不能保证事务性的操作,一定涉及“哪个任务先做,哪个任务后做”的问题,解决这个问题的方向是:

【如果出现不一致】,谁先做对业务的影响较小,就谁先执行。

 

以上文的订单生成业务为例,buyer和seller冗余表都需要插入数据:

T1(buyer_id, seller_id, oid)

T2(seller_id, buyer_id, oid)

用户下单时,如果“先插入buyer表T1,再插入seller冗余表T2”,当第一步成功、第二步失败时,出现的业务影响是“买家能看到自己的订单,卖家看不到推送的订单”

相反,如果“先插入seller表T2,再插入buyer冗余表T1”,当第一步成功、第二步失败时,出现的业务影响是“卖家能看到推送的订单,卖家看不到自己的订单”

由于这个生成订单的动作是买家发起的,买家如果看不到订单,会觉得非常奇怪,并且无法支付以推动订单状态的流转,此时即使卖家看到有人下单也是没有意义的。

因此,在此例中,应该先插入buyer表T1,再插入seller表T2。

 

however,记住结论:如果出现不一致】,谁先做对业务的影响较小,就谁先执行。

 

四、如何保证数据的一致性

从二节和第三节的讨论可以看到,不管哪种方案,因为两步操作不能保证原子性,总有出现数据不一致的可能,那如何解决呢?

【方法一:线下扫面正反冗余表全部数据】


如上图所示,线下启动一个离线的扫描工具,不停的比对正表T1和反表T2,如果发现数据不一致,就进行补偿修复。

优点

(1)比较简单,开发代价小

(2)线上服务无需修改,修复工具与线上服务解耦

缺点

(1)扫描效率低,会扫描大量的“已经能够保证一致”的数据

(2)由于扫描的数据量大,扫描一轮的时间比较长,即数据如果不一致,不一致的时间窗口比较长

 

有没有只扫描“可能存在不一致可能性”的数据,而不是每次扫描全部数据,以提高效率的优化方法呢?

【方法二:线下扫描增量数据】


每次只扫描增量的日志数据,就能够极大提高效率,缩短数据不一致的时间窗口,如上图1-4流程所示:

(1)写入正表T1

(2)第一步成功后,写入日志log1

(3)写入反表T2

(4)第二步成功后,写入日志log2

当然,我们还是需要一个离线的扫描工具,不停的比对日志log1和日志log2,如果发现数据不一致,就进行补偿修复

优点

(1)虽比方法一复杂,但仍然是比较简单的

(2)数据扫描效率高,只扫描增量数据

缺点

(1)线上服务略有修改(代价不高,多写了2条日志)

(2)虽然比方法一更实时,但时效性还是不高,不一致窗口取决于扫描的周期

 

有没有实时检测一致性并进行修复的方法呢?

【方法三:实时线上“消息对”检测】


这次不是写日志了,而是向消息总线发送消息,如上图1-4流程所示:

(1)写入正表T1

(2)第一步成功后,发送消息msg1

(3)写入反表T2

(4)第二步成功后,发送消息msg2

这次不是需要一个周期扫描的离线工具了,而是一个实时订阅消息的服务不停的收消息。

假设正常情况下,msg1和msg2的接收时间应该在3s以内,如果检测服务在收到msg1后没有收到msg2,就尝试检测数据的一致性,不一致时进行补偿修复

优点

(1)效率高

(2)实时性高

缺点

(1)方案比较复杂,上线引入了消息总线这个组件

(2)线下多了一个订阅总线的检测服务

 

however,技术方案本身就是一个投入产出比的折衷,可以根据业务对一致性的需求程度决定使用哪一种方法。我这边有过好友数据正反表的业务,使用的就是方法二。

==【完】==

回【58】58怎么玩数据库架构

回【微信】微信为啥这么省流量

回【秒杀】秒杀系统架构优化思路

回【百度】百度咋做长文本去重(一分钟系列)

回【id】细聊分布式ID生成方法

回【招聘】入职58到家

如有收获,帮忙转发哟。

这篇关于细聊冗余表数据一致性(架构师之路)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/437674

相关文章

MySQL数据目录迁移的完整过程

《MySQL数据目录迁移的完整过程》文章详细介绍了将MySQL数据目录迁移到新硬盘的整个过程,包括新硬盘挂载、创建新的数据目录、迁移数据(推荐使用两遍rsync方案)、修改MySQL配置文件和重启验证... 目录1,新硬盘挂载(如果有的话)2,创建新的 mysql 数据目录3,迁移 MySQL 数据(推荐两

Python数据验证神器Pydantic库的使用和实践中的避坑指南

《Python数据验证神器Pydantic库的使用和实践中的避坑指南》Pydantic是一个用于数据验证和设置的库,可以显著简化API接口开发,文章通过一个实际案例,展示了Pydantic如何在生产环... 目录1️⃣ 崩溃时刻:当你的API接口又双叒崩了!2️⃣ 神兵天降:3行代码解决验证难题3️⃣ 深度

MySQL快速复制一张表的四种核心方法(包括表结构和数据)

《MySQL快速复制一张表的四种核心方法(包括表结构和数据)》本文详细介绍了四种复制MySQL表(结构+数据)的方法,并对每种方法进行了对比分析,适用于不同场景和数据量的复制需求,特别是针对超大表(1... 目录一、mysql 复制表(结构+数据)的 4 种核心方法(面试结构化回答)方法 1:CREATE

详解C++ 存储二进制数据容器的几种方法

《详解C++存储二进制数据容器的几种方法》本文主要介绍了详解C++存储二进制数据容器,包括std::vector、std::array、std::string、std::bitset和std::ve... 目录1.std::vector<uint8_t>(最常用)特点:适用场景:示例:2.std::arra

MySQL中的DELETE删除数据及注意事项

《MySQL中的DELETE删除数据及注意事项》MySQL的DELETE语句是数据库操作中不可或缺的一部分,通过合理使用索引、批量删除、避免全表删除、使用TRUNCATE、使用ORDERBY和LIMI... 目录1. 基本语法单表删除2. 高级用法使用子查询删除删除多表3. 性能优化策略使用索引批量删除避免

MySQL 数据库进阶之SQL 数据操作与子查询操作大全

《MySQL数据库进阶之SQL数据操作与子查询操作大全》本文详细介绍了SQL中的子查询、数据添加(INSERT)、数据修改(UPDATE)和数据删除(DELETE、TRUNCATE、DROP)操作... 目录一、子查询:嵌套在查询中的查询1.1 子查询的基本语法1.2 子查询的实战示例二、数据添加:INSE

Linux服务器数据盘移除并重新挂载的全过程

《Linux服务器数据盘移除并重新挂载的全过程》:本文主要介绍在Linux服务器上移除并重新挂载数据盘的整个过程,分为三大步:卸载文件系统、分离磁盘和重新挂载,每一步都有详细的步骤和注意事项,确保... 目录引言第一步:卸载文件系统第二步:分离磁盘第三步:重新挂载引言在 linux 服务器上移除并重新挂p

使用MyBatis TypeHandler实现数据加密与解密的具体方案

《使用MyBatisTypeHandler实现数据加密与解密的具体方案》在我们日常的开发工作中,经常会遇到一些敏感数据需要存储,比如用户的手机号、身份证号、银行卡号等,为了保障数据安全,我们通常会对... 目录1. 核心概念:什么是 TypeHandler?2. 实战场景3. 代码实现步骤步骤 1:定义 E

使用C#导出Excel数据并保存多种格式的完整示例

《使用C#导出Excel数据并保存多种格式的完整示例》在现代企业信息化管理中,Excel已经成为最常用的数据存储和分析工具,从员工信息表、销售数据报表到财务分析表,几乎所有部门都离不开Excel,本文... 目录引言1. 安装 Spire.XLS2. 创建工作簿和填充数据3. 保存为不同格式4. 效果展示5

Python多任务爬虫实现爬取图片和GDP数据

《Python多任务爬虫实现爬取图片和GDP数据》本文主要介绍了基于FastAPI开发Web站点的方法,包括搭建Web服务器、处理图片资源、实现多任务爬虫和数据可视化,同时,还简要介绍了Python爬... 目录一. 基于FastAPI之Web站点开发1. 基于FastAPI搭建Web服务器2. Web服务