处理亿级数据的“定时任务”,如何缩短执行时间?

2023-11-30 14:38

本文主要是介绍处理亿级数据的“定时任务”,如何缩短执行时间?,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

继续答水友提问。

问题抽象

(1)用户会员系统;

(2)用户会有分数流水,每个月要做一次分数统计,对不同分数等级的会员做不同业务处理;

 

数据假设

(1)假设用户在100w级别;

(2)假设用户日均1条流水,也就是说日增流水数据量在100W级别,月新增流水在3kW级别,3个月流水数据量在亿级别;

 

常见解决方案

用一个定时任务,每个月的第一天计算一次。

//(1)查询出所有用户

uids[] = select uid from t_user;

//(2)遍历每个用户

foreach $uid in uids[]{

         //(3)查询用户3个月内分数流水

         scores[]= select score from t_flow

                   where uid=$uid and time=[3个月内];

         //(4)遍历分数流水

         foreach $score in scores[]{

                   //(5)计算总分数

                   sum+= $score;

         }

         //(6)根据分数做业务处理

         switch(sum)

         升级降级,发优惠券,发奖励;

}

 

一个月执行一次的定时任务,会存在什么问题?

计算量很大,处理的数据量很大,耗时很久,按照水友的说法,需要1-2天。

画外音:外层循环100W级别用户;内层循环9kW级别流水;业务处理需要10几次数据库交互。

 

可不可以多线程并行处理?

可以,每个用户的流水处理不耦合。

 

改为多线程并行处理,例如按照用户拆分,会存在什么问题?

每个线程都要访问数据库做业务处理,数据库有可能扛不住。

 

这类问题的优化方向是:

(1)同一份数据,减少重复计算次数;

(2)分摊CPU计算时间,尽量分散处理,而不是集中处理;

(3)减少单次计算数据量;

 

如何减少同一份数据,重复计算次数?

如上图,假设每一个方格是1个月的分数流水数据(约3kW)。

 

3月底计算时,要查询并计算1月,2月,3月三个月的9kW数据;

4月底计算时,要查询并计算2月,3月,4月三个月的9kW数据;

 

会发现,2月和3月的数据(粉色部分),被重复查询和计算了多次。
画外音:该业务,每个月的数据会被计算3次。

 

新增月积分流水汇总表,每次只计算当月增量

flow_month_sum(month, uid, flow_sum)

(1)每到月底,只计算当月分数,数据量减少到1/3,耗时也减少到1/3;

(2)同时,把前2个月流水加和,就能得到最近3个月总分数(这个动作几乎不花时间);

画外音:该表的数量级和用户表数据量一致,100w级别。

 

这样一来,每条分数流水只会被计算一次。

 

如何分摊CPU计算时间,减少单次计算数据量呢?

业务需求是一个月重新计算一次分数,但一个月集中计算,数据量太大,耗时太久,可以将计算分摊到每天。

如上图,月积分流水汇总表,升级为,日积分流水汇总表。

把每月1次集中计算,分摊为30次分散计算,每次计算数据量减少到1/30,就只需要花几十分钟处理了。

甚至,每一个小时计算一次,每次计算数据量又能减少到1/24,每次就只需要花几分钟处理了。

 

虽然时间缩短了,但毕竟是定时任务,能不能实时计算分数流水呢?

每天只新增100w分数流水,完全可以实时累加计算“日积分流水汇总”。

使用DTS(或者canal)增加一个分数流水表的监听,当用户的分数变化时,实时进行日分数流水累加,将1小时一次的定时任务计算,均匀分摊到“每时每刻”,每天新增100w流水,数据库写压力每秒钟10多次,完全扛得住。

画外音:如果不能使用DTS/canal,可以使用MQ。

 

总结,对于这类一次性集中处理大量数据的定时任务,优化思路是:

(1)同一份数据,减少重复计算次数;

(2)分摊CPU计算时间,尽量分散处理(甚至可以实时),而不是集中处理;

(3)减少单次计算数据量;

 

希望大家有所启示,思路比结论重要。

欢迎大家继续提问,有问必答。

答球友问

《MQ如何实现平滑迁移?》

《30亿日志,检索+分页+后台展示》

《1000亿文本信息,高并发MD5查询,怎么弄?》

《用DB自增键生成uid了,还能分库吗?》

课后作业

假设,某系统登录日志(日志比数据库更难,数据库可以建索引检索)如下:

2019-08-15 23:11:15 uid=123 action=login

2019-08-15 23:11:18 uid=234 action=logout

求,2019-8-15这一天,系统同时在线用户数曲线,精确到秒。

 

说明:

(1)action只能为login/logout;

(2)在线用户的定义为,已经login,还没有logout,正在使用系统的用户;

(3)8-15之前登录,8-15还没有登出的用户,也算当天在线用户(潜台词是,只扫描当天的日志是不够的);

这篇关于处理亿级数据的“定时任务”,如何缩短执行时间?的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/437415

相关文章

SpringBoot分段处理List集合多线程批量插入数据方式

《SpringBoot分段处理List集合多线程批量插入数据方式》文章介绍如何处理大数据量List批量插入数据库的优化方案:通过拆分List并分配独立线程处理,结合Spring线程池与异步方法提升效率... 目录项目场景解决方案1.实体类2.Mapper3.spring容器注入线程池bejsan对象4.创建

PHP轻松处理千万行数据的方法详解

《PHP轻松处理千万行数据的方法详解》说到处理大数据集,PHP通常不是第一个想到的语言,但如果你曾经需要处理数百万行数据而不让服务器崩溃或内存耗尽,你就会知道PHP用对了工具有多强大,下面小编就... 目录问题的本质php 中的数据流处理:为什么必不可少生成器:内存高效的迭代方式流量控制:避免系统过载一次性

Python的Darts库实现时间序列预测

《Python的Darts库实现时间序列预测》Darts一个集统计、机器学习与深度学习模型于一体的Python时间序列预测库,本文主要介绍了Python的Darts库实现时间序列预测,感兴趣的可以了解... 目录目录一、什么是 Darts?二、安装与基本配置安装 Darts导入基础模块三、时间序列数据结构与

C#实现千万数据秒级导入的代码

《C#实现千万数据秒级导入的代码》在实际开发中excel导入很常见,现代社会中很容易遇到大数据处理业务,所以本文我就给大家分享一下千万数据秒级导入怎么实现,文中有详细的代码示例供大家参考,需要的朋友可... 目录前言一、数据存储二、处理逻辑优化前代码处理逻辑优化后的代码总结前言在实际开发中excel导入很

MyBatis Plus实现时间字段自动填充的完整方案

《MyBatisPlus实现时间字段自动填充的完整方案》在日常开发中,我们经常需要记录数据的创建时间和更新时间,传统的做法是在每次插入或更新操作时手动设置这些时间字段,这种方式不仅繁琐,还容易遗漏,... 目录前言解决目标技术栈实现步骤1. 实体类注解配置2. 创建元数据处理器3. 服务层代码优化填充机制详

Linux下MySQL数据库定时备份脚本与Crontab配置教学

《Linux下MySQL数据库定时备份脚本与Crontab配置教学》在生产环境中,数据库是核心资产之一,定期备份数据库可以有效防止意外数据丢失,本文将分享一份MySQL定时备份脚本,并讲解如何通过cr... 目录备份脚本详解脚本功能说明授权与可执行权限使用 Crontab 定时执行编辑 Crontab添加定

Python实现批量CSV转Excel的高性能处理方案

《Python实现批量CSV转Excel的高性能处理方案》在日常办公中,我们经常需要将CSV格式的数据转换为Excel文件,本文将介绍一个基于Python的高性能解决方案,感兴趣的小伙伴可以跟随小编一... 目录一、场景需求二、技术方案三、核心代码四、批量处理方案五、性能优化六、使用示例完整代码七、小结一、

Python中 try / except / else / finally 异常处理方法详解

《Python中try/except/else/finally异常处理方法详解》:本文主要介绍Python中try/except/else/finally异常处理方法的相关资料,涵... 目录1. 基本结构2. 各部分的作用tryexceptelsefinally3. 执行流程总结4. 常见用法(1)多个e

C++统计函数执行时间的最佳实践

《C++统计函数执行时间的最佳实践》在软件开发过程中,性能分析是优化程序的重要环节,了解函数的执行时间分布对于识别性能瓶颈至关重要,本文将分享一个C++函数执行时间统计工具,希望对大家有所帮助... 目录前言工具特性核心设计1. 数据结构设计2. 单例模式管理器3. RAII自动计时使用方法基本用法高级用法

PHP应用中处理限流和API节流的最佳实践

《PHP应用中处理限流和API节流的最佳实践》限流和API节流对于确保Web应用程序的可靠性、安全性和可扩展性至关重要,本文将详细介绍PHP应用中处理限流和API节流的最佳实践,下面就来和小编一起学习... 目录限流的重要性在 php 中实施限流的最佳实践使用集中式存储进行状态管理(如 Redis)采用滑动