K近邻算法经典案例实现之海伦约会

2023-11-30 11:40

本文主要是介绍K近邻算法经典案例实现之海伦约会,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

引言

  上文实现了简单的K近邻算法,本文来介绍下完整的K近邻算法,将实际需求与算法进行结合,做个小小的demo,毕竟'talk is cheap,show me the code.'。

K近邻算法的一般流程如下:

  1. 收集数据:可以使用爬虫进行数据的收集,也可以使用第三方提供的免费或收费的数据。一般来讲,数据放在txt文本文件中,按照一定的格式进行存储,便于解析及处理。
  2. 准备数据:使用Python解析、预处理数据。
  3. 分析数据:可以使用很多方法对数据进行分析,例如使用Matplotlib将数据可视化。
  4. 测试算法:计算错误率。
  5. 使用算法:错误率在可接受范围内,就可以运行k-近邻算法进行分类

案例需求分析

海伦女士一直使用在线约会网站寻找适合自己的约会对象。尽管约会网站会推荐不同的任选,但她并不是喜欢每一个人。经过一番总结,她发现自己交往过的人可以进行如下分类:

  1. 不喜欢的人
  2. 魅力一般的人
  3. 极具魅力的人

海伦收集约会数据已经有了一段时间,她把这些数据存放在文本文件datingTestSet.txt中,每个样本数据占据一行,总共有1000行。datingTestSet.txt数据下载: 数据集下载

海伦收集的样本数据主要包含以下3种特征:

  1. 每年获得的飞行常客里程数

  2. 玩视频游戏所消耗时间百分比

  3. 每周消费的冰淇淋公升数

代码实现

数据解析以及可视化
  因为原始数据往往不方便进行直接计算,因此需要对文件进行简单处理成我们需要的数据。可视化是为了方便直接观察数据的规律。

代码如下:

import numpy as np
import matplotlib.pyplot as plt
import matplotlib.lines as mlines# 数据预处理
def fileRead(fileName):#打开文件fr = open(fileName)#读取全部内容arraryOfLines = fr.readlines()#求行数numberOfLines = len(arraryOfLines)#生成numberOfLines行,3列的矩阵,方便后面存放数据returnMat = np.zeros((numberOfLines, 3))#用于存放类别classLabelVector = []#设置索引,用于循环index = 0#开始循环读取for line in arraryOfLines:#去除掉文件中的多余字符line = line.strip()#用空格对内容进行分割listFormLine = line.split('\t')#赋值returnMat[index, :] = listFormLine[0:3]#对类别数组进行赋值if listFormLine[-1] == 'didntLike':classLabelVector.append(1)if listFormLine[-1] == 'smallDoses':classLabelVector.append(2)if listFormLine[-1] == 'largeDoses':classLabelVector.append(3)index += 1return returnMat, classLabelVector# 数据展示
def showData(datingDataMat, datingLabels):fig, axs = plt.subplots(nrows=2, ncols=2, sharex=False, sharey=False, figsize=(13, 8))LabelsColors = []for i in datingLabels:if i == 1:LabelsColors.append('black')if i == 2:LabelsColors.append('orange')if i == 3:LabelsColors.append('red')axs[0][0].scatter(x=datingDataMat[:, 0], y=datingDataMat[:, 1], color=LabelsColors, s=15, alpha=.5)axs0_title_text = axs[0][0].set_title('flight_play')axs0_xlabel_text = axs[0][0].set_xlabel('flight_time')axs0_ylabel_text = axs[0][0].set_ylabel('play_time')plt.setp(axs0_title_text, size=9, weight='bold', color='red')plt.setp(axs0_xlabel_text, size=7, weight='bold', color='black')plt.setp(axs0_ylabel_text, size=7, weight='bold', color='black')axs[0][1].scatter(x=datingDataMat[:, 0], y=datingDataMat[:, 2], color=LabelsColors, s=15, alpha=.5)# 设置标题,x轴label,y轴labelaxs1_title_text = axs[0][1].set_title('flight_eat')axs1_xlabel_text = axs[0][1].set_xlabel('flight')axs1_ylabel_text = axs[0][1].set_ylabel('eat')plt.setp(axs1_title_text, size=9, weight='bold', color='red')plt.setp(axs1_xlabel_text, size=7, weight='bold', color='black')plt.setp(axs1_ylabel_text, size=7, weight='bold', color='black')# 画出散点图,以datingDataMat矩阵的第二(玩游戏)、第三列(冰激凌)数据画散点数据,散点大小为15,透明度为0.5axs[1][0].scatter(x=datingDataMat[:, 1], y=datingDataMat[:, 2], color=LabelsColors, s=15, alpha=.5)# 设置标题,x轴label,y轴labelaxs2_title_text = axs[1][0].set_title('play_eat')axs2_xlabel_text = axs[1][0].set_xlabel('play_time')axs2_ylabel_text = axs[1][0].set_ylabel('eat_weight')plt.setp(axs2_title_text, size=9, weight='bold', color='red')plt.setp(axs2_xlabel_text, size=7, weight='bold', color='black')plt.setp(axs2_ylabel_text, size=7, weight='bold', color='black')# 设置图例didntLike = mlines.Line2D([], [], color='black', marker='.',markersize=6, label='didntLike')smallDoses = mlines.Line2D([], [], color='orange', marker='.',markersize=6, label='smallDoses')largeDoses = mlines.Line2D([], [], color='red', marker='.',markersize=6, label='largeDoses')# 添加图例axs[0][0].legend(handles=[didntLike, smallDoses, largeDoses])axs[0][1].legend(handles=[didntLike, smallDoses, largeDoses])axs[1][0].legend(handles=[didntLike, smallDoses, largeDoses])# 显示图片plt.show()fileName = 'datingTestSet.txt'
datingDataMat, datingLabels = fileRead(fileName)
print("datingLabels is",datingLabels)
print("datingDataMat is",datingDataMat)
showData(datingDataMat,datingLabels)

效果展示

类别矩阵以及初始数据矩阵

在这里插入图片描述

散点图

在这里插入图片描述

数据归一化

数据为什么要归一化?

  通过上面的图片我们不难发现一个问题,飞行里程数的数据一般都是成百上千,但是吃冰淇淋的总量也就几升而已,这显然会影响欧式距离公式的计算结果,
就如我们小时候画直角坐标系的时候,如果x轴y轴数值差距过大,我们往往会为x,y轴设立不同的比例,以此来让数据更加规整,那是显示层面的,同理
为了让欧式距离公式计算更加精准,我们常用的方法一般为数值归一化,将取值范围取到0到1或者-1到1之间。

归一化公式如下:
n e w V a l u e s = ( o l d V a l u e − m i n ) / ( m a x − m i n ) newValues =(oldValue - min)/(max - min) newValues=(oldValuemin)/(maxmin)
代码实现:

def autoNorm(dataSet):#获得数据的最小值minVals = dataSet.min(0)maxVals = dataSet.max(0)#最大值和最小值的范围ranges = maxVals - minVals#shape(dataSet)返回dataSet的矩阵行列数normDataSet = np.zeros(np.shape(dataSet))#返回dataSet的行数m = dataSet.shape[0]#原始值减去最小值normDataSet = dataSet - np.tile(minVals, (m, 1))#除以最大和最小值的差,得到归一化数据normDataSet = normDataSet / np.tile(ranges, (m, 1))#返回归一化数据结果,数据范围,最小值return normDataSet, ranges, minVals

测试算法性能:验证分类器

  机器学习算法的一个重要部分就是对算法进行评估,在监督学习中,通常我们将90%的样本作为训练样本来训练分类器,10%的样本用来测试分类器的准确率。
算法上一期已经实现过,这里就不多赘诉了,直接上完整代码。
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.lines as mlines
import operator# 数据预处理
def fileRead(fileName):# 打开文件fr = open(fileName)# 读取全部内容arraryOfLines = fr.readlines()# 求行数numberOfLines = len(arraryOfLines)# 生成numberOfLines行,3列的矩阵,方便后面存放数据returnMat = np.zeros((numberOfLines, 3))# 用于存放类别classLabelVector = []# 设置索引,用于循环index = 0# 开始循环读取for line in arraryOfLines:# 去除掉文件中的多余字符line = line.strip()# 用空格对内容进行分割listFormLine = line.split('\t')# 赋值returnMat[index, :] = listFormLine[0:3]# 对类别数组进行赋值if listFormLine[-1] == 'didntLike':classLabelVector.append(1)if listFormLine[-1] == 'smallDoses':classLabelVector.append(2)if listFormLine[-1] == 'largeDoses':classLabelVector.append(3)index += 1return returnMat, classLabelVector# 数据展示
def showData(datingDataMat, datingLabels):fig, axs = plt.subplots(nrows=2, ncols=2, sharex=False, sharey=False, figsize=(13, 8))LabelsColors = []for i in datingLabels:if i == 1:LabelsColors.append('black')if i == 2:LabelsColors.append('orange')if i == 3:LabelsColors.append('red')axs[0][0].scatter(x=datingDataMat[:, 0], y=datingDataMat[:, 1], color=LabelsColors, s=15, alpha=.5)axs0_title_text = axs[0][0].set_title('flight_play')axs0_xlabel_text = axs[0][0].set_xlabel('flight_time')axs0_ylabel_text = axs[0][0].set_ylabel('play_time')plt.setp(axs0_title_text, size=9, weight='bold', color='red')plt.setp(axs0_xlabel_text, size=7, weight='bold', color='black')plt.setp(axs0_ylabel_text, size=7, weight='bold', color='black')axs[0][1].scatter(x=datingDataMat[:, 0], y=datingDataMat[:, 2], color=LabelsColors, s=15, alpha=.5)# 设置标题,x轴label,y轴labelaxs1_title_text = axs[0][1].set_title('flight_eat')axs1_xlabel_text = axs[0][1].set_xlabel('flight')axs1_ylabel_text = axs[0][1].set_ylabel('eat')plt.setp(axs1_title_text, size=9, weight='bold', color='red')plt.setp(axs1_xlabel_text, size=7, weight='bold', color='black')plt.setp(axs1_ylabel_text, size=7, weight='bold', color='black')# 画出散点图,以datingDataMat矩阵的第二(玩游戏)、第三列(冰激凌)数据画散点数据,散点大小为15,透明度为0.5axs[1][0].scatter(x=datingDataMat[:, 1], y=datingDataMat[:, 2], color=LabelsColors, s=15, alpha=.5)# 设置标题,x轴label,y轴labelaxs2_title_text = axs[1][0].set_title('play_eat')axs2_xlabel_text = axs[1][0].set_xlabel('play_time')axs2_ylabel_text = axs[1][0].set_ylabel('eat_weight')plt.setp(axs2_title_text, size=9, weight='bold', color='red')plt.setp(axs2_xlabel_text, size=7, weight='bold', color='black')plt.setp(axs2_ylabel_text, size=7, weight='bold', color='black')# 设置图例didntLike = mlines.Line2D([], [], color='black', marker='.',markersize=6, label='didntLike')smallDoses = mlines.Line2D([], [], color='orange', marker='.',markersize=6, label='smallDoses')largeDoses = mlines.Line2D([], [], color='red', marker='.',markersize=6, label='largeDoses')# 添加图例axs[0][0].legend(handles=[didntLike, smallDoses, largeDoses])axs[0][1].legend(handles=[didntLike, smallDoses, largeDoses])axs[1][0].legend(handles=[didntLike, smallDoses, largeDoses])# 显示图片plt.show()# 数据归一化
def autoNorm(dataSet):minVals = dataSet.min(0)maxVals = dataSet.max(0)ranges = maxVals - minValsnormalDataSet = np.zeros(np.shape(dataSet))m = dataSet.shape[0]normalDataSet = dataSet - np.tile(minVals, (m, 1))normalDataSet = normalDataSet / np.tile(ranges, (m, 1))return normalDataSet, ranges, minVals#分类器
def classify(input, dataSet, labels, k):# numpy中的shape方法用于计算形状 eg: dataSet: 4*2# print(dataSet.shape)dataSetSize = dataSet.shape[0]# numpy中的tile方法,用于对矩阵进行填充# 将inX矩阵填充至与dataSet矩阵相同规模,后相减diffMat = np.tile(input, (dataSetSize, 1)) - dataSet# 平方sqDiffMat = diffMat ** 2# 求和sqDistance = sqDiffMat.sum(axis=1)# 开方distance = sqDistance ** 0.5# argsort()方法进行直接排序sortDist = distance.argsort()classCount = {}for i in range(k):# 取出前k个元素的类别voteIlabel = labels[sortDist[i]]# dict.get(key,default=None),字典的get()方法,返回指定键的值,如果值不在字典中返回默认值。# 计算类别次数classCount[voteIlabel] = classCount.get(voteIlabel, 0) + 1# 排序sortedClassCount = sorted(classCount.items(), key=operator.itemgetter(1), reverse=True)# 返回次数最多的类别,即所要分类的类别return sortedClassCount[0][0]fileName = 'datingTestSet.txt'
datingDataMat, datingLabels = fileRead(fileName)
showData(datingDataMat, datingLabels)
percent = 0.10
normalDataMat, ranges, minvals = autoNorm(dataSet=datingDataMat)
m = normalDataMat.shape[0]
numTestVecs = int(m*percent)
errorCount = 0.0
for i in range(numTestVecs):classifyResult = classify(normalDataMat[i,:],normalDataMat[numTestVecs:m,:],datingLabels[numTestVecs:m],4)print("分类结果:%d,真实类别:%d" % (classifyResult,datingLabels[i]))if(classifyResult!=datingLabels[i]):errorCount += 1.0
print("错误率:%f%%" %(errorCount/float(numTestVecs)*100))

运行截图
在这里插入图片描述

这篇关于K近邻算法经典案例实现之海伦约会的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/436897

相关文章

使用Python实现IP地址和端口状态检测与监控

《使用Python实现IP地址和端口状态检测与监控》在网络运维和服务器管理中,IP地址和端口的可用性监控是保障业务连续性的基础需求,本文将带你用Python从零打造一个高可用IP监控系统,感兴趣的小伙... 目录概述:为什么需要IP监控系统使用步骤说明1. 环境准备2. 系统部署3. 核心功能配置系统效果展

Python实现微信自动锁定工具

《Python实现微信自动锁定工具》在数字化办公时代,微信已成为职场沟通的重要工具,但临时离开时忘记锁屏可能导致敏感信息泄露,下面我们就来看看如何使用Python打造一个微信自动锁定工具吧... 目录引言:当微信隐私遇到自动化守护效果展示核心功能全景图技术亮点深度解析1. 无操作检测引擎2. 微信路径智能获

Python中pywin32 常用窗口操作的实现

《Python中pywin32常用窗口操作的实现》本文主要介绍了Python中pywin32常用窗口操作的实现,pywin32主要的作用是供Python开发者快速调用WindowsAPI的一个... 目录获取窗口句柄获取最前端窗口句柄获取指定坐标处的窗口根据窗口的完整标题匹配获取句柄根据窗口的类别匹配获取句

在 Spring Boot 中实现异常处理最佳实践

《在SpringBoot中实现异常处理最佳实践》本文介绍如何在SpringBoot中实现异常处理,涵盖核心概念、实现方法、与先前查询的集成、性能分析、常见问题和最佳实践,感兴趣的朋友一起看看吧... 目录一、Spring Boot 异常处理的背景与核心概念1.1 为什么需要异常处理?1.2 Spring B

Python位移操作和位运算的实现示例

《Python位移操作和位运算的实现示例》本文主要介绍了Python位移操作和位运算的实现示例,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一... 目录1. 位移操作1.1 左移操作 (<<)1.2 右移操作 (>>)注意事项:2. 位运算2.1

如何在 Spring Boot 中实现 FreeMarker 模板

《如何在SpringBoot中实现FreeMarker模板》FreeMarker是一种功能强大、轻量级的模板引擎,用于在Java应用中生成动态文本输出(如HTML、XML、邮件内容等),本文... 目录什么是 FreeMarker 模板?在 Spring Boot 中实现 FreeMarker 模板1. 环

Qt实现网络数据解析的方法总结

《Qt实现网络数据解析的方法总结》在Qt中解析网络数据通常涉及接收原始字节流,并将其转换为有意义的应用层数据,这篇文章为大家介绍了详细步骤和示例,感兴趣的小伙伴可以了解下... 目录1. 网络数据接收2. 缓冲区管理(处理粘包/拆包)3. 常见数据格式解析3.1 jsON解析3.2 XML解析3.3 自定义

SpringMVC 通过ajax 前后端数据交互的实现方法

《SpringMVC通过ajax前后端数据交互的实现方法》:本文主要介绍SpringMVC通过ajax前后端数据交互的实现方法,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价... 在前端的开发过程中,经常在html页面通过AJAX进行前后端数据的交互,SpringMVC的controll

Java Stream流使用案例深入详解

《JavaStream流使用案例深入详解》:本文主要介绍JavaStream流使用案例详解,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录前言1. Lambda1.1 语法1.2 没参数只有一条语句或者多条语句1.3 一个参数只有一条语句或者多

Spring Security自定义身份认证的实现方法

《SpringSecurity自定义身份认证的实现方法》:本文主要介绍SpringSecurity自定义身份认证的实现方法,下面对SpringSecurity的这三种自定义身份认证进行详细讲解,... 目录1.内存身份认证(1)创建配置类(2)验证内存身份认证2.JDBC身份认证(1)数据准备 (2)配置依