玄学调参实践篇 | 深度学习模型 + 预训练模型 + 大模型LLM

2023-11-30 05:12

本文主要是介绍玄学调参实践篇 | 深度学习模型 + 预训练模型 + 大模型LLM,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

😍 这篇主要简单记录一些调参实践,无聊时会不定期更新~

在这里插入图片描述

文章目录

  • 0、学习率与batch_size判断
  • 1、Epoch数判断
  • 2、判断模型架构是否有问题
  • 3、大模型 - 计算量、模型、和数据大小的关系
  • 4、大模型调参相关论文经验总结
  • 5、训练时模型的保存

0、学习率与batch_size判断

  • batch_size: 这不用多说,一般按2的指数设置如:2、4、8、16…。设多大基本看你的显卡显存能不能hold得住咯。
  • 学习率: 常用的一些自适应学习率调整策略如:linear_with_warmup、cosine_with_warmup。现在像一些大模型如ChatGLM、LLaMA等的训练里基本都用的cosine。学习率基本就是:3e-5, 4e-5, 5e-5…这样调。
  • 学习率与batch_size的关系: 一般来说,batch_size的大小一般与学习率的大小成正比。batch_size越大一般意味着算法收敛方向的置信度越大,也可以选择较大的学习率来加快收敛速度。而小的batch_size规律性较差,需要小的学习率保证不出错。在显存允许的情况下,选择大的batch-size。

1、Epoch数判断

  • 1、观察训练集和验证集的损失函数(loss)和准确率(accuracy)的变化曲线,如果训练集的指标持续下降或上升,而验证集的指标开始出现反向变化或者停滞不动,那么可能就是过拟合或者欠拟合的现象,需要及时停止训练或者调整参数。【😄提一小点:有时候玄学在于过拟合不一定会导致模型效果变差, 有时反而相反。可以参考instructgpt论文,或者自己在数学、代码等任务试验一下,往往过拟合效果是更好的】
  • 2、使用预训练模型(pre-trained model),比如BERT,GPT等,在大规模的数据集上进行了长时间的训练,已经学习到了很多通用的特征和知识,所以在微调的时候只需要少量的epoch就可以达到很好的效果。
  • 3、Early Stopping,即在每个epoch结束后,用验证集评估模型的性能,如果性能没有提升或者下降了一定次数,就停止训练,并保存最佳的模型。

⭐似乎在一些预训练大模型上开始微调,基本就是wamup用5个左右的epoch;cosine schedule用10个左右的epoch尝试。咱也不知对不对,我以往是这样搞的。自己可以变大变小试试。

2、判断模型架构是否有问题

⭐ 我觉得可以用部分数据,训多几个epoch,看看模型会不会过拟合,如果会,那模型大概没啥问题。

3、大模型 - 计算量、模型、和数据大小的关系

在大模型的研发中,通常会有下面一些需求:

  • 计划训练一个10B的模型,想知道至少需要多大的数据?
  • 收集到了1T的数据,想知道能训练一个多大的模型?
  • 老板准备1个月后开发布会,给的资源是100张A100,应该用多少数据训多大的模型效果最好?
  • 老板对现在10B的模型不满意,想知道扩大到100B模型的效果能提升到多少?

以上这些问题都可以基于Scaling Law的理论进行回答。本文是阅读了一系列 Scaling Law的文章后的整理和思考,包括Scaling Law的概念和推导以及反Scaling Law的场景。
⭐ 解析大模型中的Scaling Law: https://zhuanlan.zhihu.com/p/667489780

4、大模型调参相关论文经验总结

下面是知乎清华老哥的总结:

  • 最近在做一些大模型微调的工作。开始的时候比较头疼怎么调超参数,毕竟不能像小模型那样疯狂跑实验,看结果积累经验了,一是计算量太大,二是大模型比较不好评估(毕竟让模型做选择题不能准确的评估性能,一些垂类领域也很难搞到相关测试集,大部分在微调的工程师都是在调垂类模型吧:)。
  • 其次,如果用GPT4评估又涉及到数据隐私问题,同时下边列举的一篇文章显示,GPT4更倾向于给句子长的、回答更多样性的答案更高的分数,有时候也是不准的。。。)。最后也只能多看看微调/训练相关的论文借鉴借鉴经验了。下边会列出一些最近看的文章,给出重要结论以及我的一些个人观点,如果有感兴趣就去精读一下,希望能帮助到一些微调er,本文章不定期更新。。。
  • ⭐ 文章链接:https://www.zhihu.com/question/607397171

5、训练时模型的保存

  • 一般来说我们会搞个验证集,设置一个评估指标,训练到多少个step或是1个epoch时,测一遍验证集,每次保存在验证集上最优指标对应的模型。
  • 现在的一些大模型训练,基本在训练时不搞验证集,而是看train loss来保存最优模型。最常见的是每隔多少个step,保存一次模型checkpoint。最后训练结束后,再根据loss或是各个checkpoint在验证集的表现来挑个最优模型。

这篇关于玄学调参实践篇 | 深度学习模型 + 预训练模型 + 大模型LLM的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/435749

相关文章

在 Spring Boot 中实现异常处理最佳实践

《在SpringBoot中实现异常处理最佳实践》本文介绍如何在SpringBoot中实现异常处理,涵盖核心概念、实现方法、与先前查询的集成、性能分析、常见问题和最佳实践,感兴趣的朋友一起看看吧... 目录一、Spring Boot 异常处理的背景与核心概念1.1 为什么需要异常处理?1.2 Spring B

Java学习手册之Filter和Listener使用方法

《Java学习手册之Filter和Listener使用方法》:本文主要介绍Java学习手册之Filter和Listener使用方法的相关资料,Filter是一种拦截器,可以在请求到达Servl... 目录一、Filter(过滤器)1. Filter 的工作原理2. Filter 的配置与使用二、Listen

Spring Boot 整合 SSE的高级实践(Server-Sent Events)

《SpringBoot整合SSE的高级实践(Server-SentEvents)》SSE(Server-SentEvents)是一种基于HTTP协议的单向通信机制,允许服务器向浏览器持续发送实... 目录1、简述2、Spring Boot 中的SSE实现2.1 添加依赖2.2 实现后端接口2.3 配置超时时

Python使用getopt处理命令行参数示例解析(最佳实践)

《Python使用getopt处理命令行参数示例解析(最佳实践)》getopt模块是Python标准库中一个简单但强大的命令行参数处理工具,它特别适合那些需要快速实现基本命令行参数解析的场景,或者需要... 目录为什么需要处理命令行参数?getopt模块基础实际应用示例与其他参数处理方式的比较常见问http

Python中__init__方法使用的深度解析

《Python中__init__方法使用的深度解析》在Python的面向对象编程(OOP)体系中,__init__方法如同建造房屋时的奠基仪式——它定义了对象诞生时的初始状态,下面我们就来深入了解下_... 目录一、__init__的基因图谱二、初始化过程的魔法时刻继承链中的初始化顺序self参数的奥秘默认

Java Optional的使用技巧与最佳实践

《JavaOptional的使用技巧与最佳实践》在Java中,Optional是用于优雅处理null的容器类,其核心目标是显式提醒开发者处理空值场景,避免NullPointerExce... 目录一、Optional 的核心用途二、使用技巧与最佳实践三、常见误区与反模式四、替代方案与扩展五、总结在 Java

Spring Boot循环依赖原理、解决方案与最佳实践(全解析)

《SpringBoot循环依赖原理、解决方案与最佳实践(全解析)》循环依赖指两个或多个Bean相互直接或间接引用,形成闭环依赖关系,:本文主要介绍SpringBoot循环依赖原理、解决方案与最... 目录一、循环依赖的本质与危害1.1 什么是循环依赖?1.2 核心危害二、Spring的三级缓存机制2.1 三

Python 中的 with open文件操作的最佳实践

《Python中的withopen文件操作的最佳实践》在Python中,withopen()提供了一个简洁而安全的方式来处理文件操作,它不仅能确保文件在操作完成后自动关闭,还能处理文件操作中的异... 目录什么是 with open()?为什么使用 with open()?使用 with open() 进行

Spring Security基于数据库的ABAC属性权限模型实战开发教程

《SpringSecurity基于数据库的ABAC属性权限模型实战开发教程》:本文主要介绍SpringSecurity基于数据库的ABAC属性权限模型实战开发教程,本文给大家介绍的非常详细,对大... 目录1. 前言2. 权限决策依据RBACABAC综合对比3. 数据库表结构说明4. 实战开始5. MyBA

SpringCloud动态配置注解@RefreshScope与@Component的深度解析

《SpringCloud动态配置注解@RefreshScope与@Component的深度解析》在现代微服务架构中,动态配置管理是一个关键需求,本文将为大家介绍SpringCloud中相关的注解@Re... 目录引言1. @RefreshScope 的作用与原理1.1 什么是 @RefreshScope1.