探索性数据分析(EDA):从数据中发现洞察力

2023-11-29 11:15

本文主要是介绍探索性数据分析(EDA):从数据中发现洞察力,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

写在开头

在数据科学的世界中,探索性数据分析(Exploratory Data Analysis,EDA)是一项至关重要的任务,它能够帮助我们深入了解数据、发现潜在的模式,并为进一步的分析和建模提供基础。本篇博客将介绍探索性数据分析的基本技术和方法,通过具体的数字、场景和代码,帮助读者在数据的海洋中发现有价值的信息和洞察力。

1. EDA的基本步骤

探索性数据分析通常包括以下基本步骤:

  • 1.数据收集: 获取数据集,可以来自数据库、文件、API等数据源。确保了解数据的来源、格式以及数据集中包含的变量。
  • 2.初步观察: 对数据集进行初步观察,了解数据的基本信息,包括数据的维度、列名、数据类型等。
  • 3.数据清洗: 进行数据清洗,处理缺失值、异常值、重复值等。确保数据的准确性和完整性。
  • 4.单变量分析: 对单个变量进行分析,包括描述性统计、频数分布、直方图等。这有助于了解每个变量的分布和特征。
  • 5.双变量分析: 探索变量之间的关系,通过散点图、相关性分析等方法来了解两个变量之间的关联性。
  • 6.多变量分析: 考虑多个变量之间的关系,使用热力图、散点矩阵等方法,了解变量之间的复杂关系。
  • 7.探索性可视化: 使用各种图表(如散点图、箱线图、直方图)进行可视化分析,直观地展示数据的分布、趋势和异常。
  • 8.数据变换和特征工程: 对数据进行转换或特征工程,创建新的变量,以便更好地进行建模和分析。
  • 9.统计检验: 使用统计方法验证假设,例如t检验、方差分析等,以确认观察到的模式是否具有统计学意义。
  • 10.建模: 如果有兴趣,可以尝试建立一些简单的模型,以进一步探索数据中的模式和趋势。
  • 11.总结和结论: 总结整个EDA的过程,提炼出关键观察、发现的模式,并得出初步结论。
  • 12.报告和可视化: 将分析结果以清晰的图表和报告的形式呈现,确保能够有效地传达数据的关键信息。
  • 13.反馈和迭代: 根据反馈和可能的需求,对分析进行迭代,进一步深入研究特定领域或问题。

1.1 数据概览

首先,我们需要对数据有一个整体的了解。使用 Pandas 库可以轻松查看数据的前几行,了解数据的列名、类型等信息:

import pandas as pd# 读取数据
data = pd.read_csv('your_data.csv')# 查看前几行
print(data.head())

1.2 描述性统计

使用 Pandas 的 describe() 方法可以生成对数值型数据的基本描述统计信息,如均值、标准差、最小值、25%、50%、75% 分位数等:

# 描述性统计
print(data.describe())

1.3 借用一些EDA库

pandas_profiling可以快速帮助理解数据,数据量大的话,可能耗费时间比较长。

import pandas_profiling#预览数据
pandas_profiling.ProfileReport(data)

missinggo是一个可视化的缺失值库,可以帮助我们快速了解数据中的缺失情况。

import missingno as msno# 可视化缺失值
msno.matrix(df)
plt.title('Missing Values Matrix')
plt.show()

2. 数据可视化

2.1 直方图

直方图是一种展示数据分布的有效方式。通过 Matplotlib 或 Seaborn 库,我们可以轻松绘制直方图:

import matplotlib.pyplot as plt
import seaborn as sns# 绘制直方图
plt.figure(figsize

这篇关于探索性数据分析(EDA):从数据中发现洞察力的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/432611

相关文章

SQL Server修改数据库名及物理数据文件名操作步骤

《SQLServer修改数据库名及物理数据文件名操作步骤》在SQLServer中重命名数据库是一个常见的操作,但需要确保用户具有足够的权限来执行此操作,:本文主要介绍SQLServer修改数据... 目录一、背景介绍二、操作步骤2.1 设置为单用户模式(断开连接)2.2 修改数据库名称2.3 查找逻辑文件名

canal实现mysql数据同步的详细过程

《canal实现mysql数据同步的详细过程》:本文主要介绍canal实现mysql数据同步的详细过程,本文通过实例图文相结合给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的... 目录1、canal下载2、mysql同步用户创建和授权3、canal admin安装和启动4、canal

使用SpringBoot整合Sharding Sphere实现数据脱敏的示例

《使用SpringBoot整合ShardingSphere实现数据脱敏的示例》ApacheShardingSphere数据脱敏模块,通过SQL拦截与改写实现敏感信息加密存储,解决手动处理繁琐及系统改... 目录痛点一:痛点二:脱敏配置Quick Start——Spring 显示配置:1.引入依赖2.创建脱敏

详解如何使用Python构建从数据到文档的自动化工作流

《详解如何使用Python构建从数据到文档的自动化工作流》这篇文章将通过真实工作场景拆解,为大家展示如何用Python构建自动化工作流,让工具代替人力完成这些数字苦力活,感兴趣的小伙伴可以跟随小编一起... 目录一、Excel处理:从数据搬运工到智能分析师二、PDF处理:文档工厂的智能生产线三、邮件自动化:

Python数据分析与可视化的全面指南(从数据清洗到图表呈现)

《Python数据分析与可视化的全面指南(从数据清洗到图表呈现)》Python是数据分析与可视化领域中最受欢迎的编程语言之一,凭借其丰富的库和工具,Python能够帮助我们快速处理、分析数据并生成高质... 目录一、数据采集与初步探索二、数据清洗的七种武器1. 缺失值处理策略2. 异常值检测与修正3. 数据

pandas实现数据concat拼接的示例代码

《pandas实现数据concat拼接的示例代码》pandas.concat用于合并DataFrame或Series,本文主要介绍了pandas实现数据concat拼接的示例代码,具有一定的参考价值,... 目录语法示例:使用pandas.concat合并数据默认的concat:参数axis=0,join=

C#代码实现解析WTGPS和BD数据

《C#代码实现解析WTGPS和BD数据》在现代的导航与定位应用中,准确解析GPS和北斗(BD)等卫星定位数据至关重要,本文将使用C#语言实现解析WTGPS和BD数据,需要的可以了解下... 目录一、代码结构概览1. 核心解析方法2. 位置信息解析3. 经纬度转换方法4. 日期和时间戳解析5. 辅助方法二、L

使用Python和Matplotlib实现可视化字体轮廓(从路径数据到矢量图形)

《使用Python和Matplotlib实现可视化字体轮廓(从路径数据到矢量图形)》字体设计和矢量图形处理是编程中一个有趣且实用的领域,通过Python的matplotlib库,我们可以轻松将字体轮廓... 目录背景知识字体轮廓的表示实现步骤1. 安装依赖库2. 准备数据3. 解析路径指令4. 绘制图形关键

解决mysql插入数据锁等待超时报错:Lock wait timeout exceeded;try restarting transaction

《解决mysql插入数据锁等待超时报错:Lockwaittimeoutexceeded;tryrestartingtransaction》:本文主要介绍解决mysql插入数据锁等待超时报... 目录报错信息解决办法1、数据库中执行如下sql2、再到 INNODB_TRX 事务表中查看总结报错信息Lock

使用C#删除Excel表格中的重复行数据的代码详解

《使用C#删除Excel表格中的重复行数据的代码详解》重复行是指在Excel表格中完全相同的多行数据,删除这些重复行至关重要,因为它们不仅会干扰数据分析,还可能导致错误的决策和结论,所以本文给大家介绍... 目录简介使用工具C# 删除Excel工作表中的重复行语法工作原理实现代码C# 删除指定Excel单元