探索性数据分析(EDA):从数据中发现洞察力

2023-11-29 11:15

本文主要是介绍探索性数据分析(EDA):从数据中发现洞察力,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

写在开头

在数据科学的世界中,探索性数据分析(Exploratory Data Analysis,EDA)是一项至关重要的任务,它能够帮助我们深入了解数据、发现潜在的模式,并为进一步的分析和建模提供基础。本篇博客将介绍探索性数据分析的基本技术和方法,通过具体的数字、场景和代码,帮助读者在数据的海洋中发现有价值的信息和洞察力。

1. EDA的基本步骤

探索性数据分析通常包括以下基本步骤:

  • 1.数据收集: 获取数据集,可以来自数据库、文件、API等数据源。确保了解数据的来源、格式以及数据集中包含的变量。
  • 2.初步观察: 对数据集进行初步观察,了解数据的基本信息,包括数据的维度、列名、数据类型等。
  • 3.数据清洗: 进行数据清洗,处理缺失值、异常值、重复值等。确保数据的准确性和完整性。
  • 4.单变量分析: 对单个变量进行分析,包括描述性统计、频数分布、直方图等。这有助于了解每个变量的分布和特征。
  • 5.双变量分析: 探索变量之间的关系,通过散点图、相关性分析等方法来了解两个变量之间的关联性。
  • 6.多变量分析: 考虑多个变量之间的关系,使用热力图、散点矩阵等方法,了解变量之间的复杂关系。
  • 7.探索性可视化: 使用各种图表(如散点图、箱线图、直方图)进行可视化分析,直观地展示数据的分布、趋势和异常。
  • 8.数据变换和特征工程: 对数据进行转换或特征工程,创建新的变量,以便更好地进行建模和分析。
  • 9.统计检验: 使用统计方法验证假设,例如t检验、方差分析等,以确认观察到的模式是否具有统计学意义。
  • 10.建模: 如果有兴趣,可以尝试建立一些简单的模型,以进一步探索数据中的模式和趋势。
  • 11.总结和结论: 总结整个EDA的过程,提炼出关键观察、发现的模式,并得出初步结论。
  • 12.报告和可视化: 将分析结果以清晰的图表和报告的形式呈现,确保能够有效地传达数据的关键信息。
  • 13.反馈和迭代: 根据反馈和可能的需求,对分析进行迭代,进一步深入研究特定领域或问题。

1.1 数据概览

首先,我们需要对数据有一个整体的了解。使用 Pandas 库可以轻松查看数据的前几行,了解数据的列名、类型等信息:

import pandas as pd# 读取数据
data = pd.read_csv('your_data.csv')# 查看前几行
print(data.head())

1.2 描述性统计

使用 Pandas 的 describe() 方法可以生成对数值型数据的基本描述统计信息,如均值、标准差、最小值、25%、50%、75% 分位数等:

# 描述性统计
print(data.describe())

1.3 借用一些EDA库

pandas_profiling可以快速帮助理解数据,数据量大的话,可能耗费时间比较长。

import pandas_profiling#预览数据
pandas_profiling.ProfileReport(data)

missinggo是一个可视化的缺失值库,可以帮助我们快速了解数据中的缺失情况。

import missingno as msno# 可视化缺失值
msno.matrix(df)
plt.title('Missing Values Matrix')
plt.show()

2. 数据可视化

2.1 直方图

直方图是一种展示数据分布的有效方式。通过 Matplotlib 或 Seaborn 库,我们可以轻松绘制直方图:

import matplotlib.pyplot as plt
import seaborn as sns# 绘制直方图
plt.figure(figsize

这篇关于探索性数据分析(EDA):从数据中发现洞察力的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/432611

相关文章

MySQL快速复制一张表的四种核心方法(包括表结构和数据)

《MySQL快速复制一张表的四种核心方法(包括表结构和数据)》本文详细介绍了四种复制MySQL表(结构+数据)的方法,并对每种方法进行了对比分析,适用于不同场景和数据量的复制需求,特别是针对超大表(1... 目录一、mysql 复制表(结构+数据)的 4 种核心方法(面试结构化回答)方法 1:CREATE

详解C++ 存储二进制数据容器的几种方法

《详解C++存储二进制数据容器的几种方法》本文主要介绍了详解C++存储二进制数据容器,包括std::vector、std::array、std::string、std::bitset和std::ve... 目录1.std::vector<uint8_t>(最常用)特点:适用场景:示例:2.std::arra

SpringBoot整合Apache Spark实现一个简单的数据分析功能

《SpringBoot整合ApacheSpark实现一个简单的数据分析功能》ApacheSpark是一个开源的大数据处理框架,它提供了丰富的功能和API,用于分布式数据处理、数据分析和机器学习等任务... 目录第一步、添加android依赖第二步、编写配置类第三步、编写控制类启动项目并测试总结ApacheS

MySQL中的DELETE删除数据及注意事项

《MySQL中的DELETE删除数据及注意事项》MySQL的DELETE语句是数据库操作中不可或缺的一部分,通过合理使用索引、批量删除、避免全表删除、使用TRUNCATE、使用ORDERBY和LIMI... 目录1. 基本语法单表删除2. 高级用法使用子查询删除删除多表3. 性能优化策略使用索引批量删除避免

MySQL 数据库进阶之SQL 数据操作与子查询操作大全

《MySQL数据库进阶之SQL数据操作与子查询操作大全》本文详细介绍了SQL中的子查询、数据添加(INSERT)、数据修改(UPDATE)和数据删除(DELETE、TRUNCATE、DROP)操作... 目录一、子查询:嵌套在查询中的查询1.1 子查询的基本语法1.2 子查询的实战示例二、数据添加:INSE

Linux服务器数据盘移除并重新挂载的全过程

《Linux服务器数据盘移除并重新挂载的全过程》:本文主要介绍在Linux服务器上移除并重新挂载数据盘的整个过程,分为三大步:卸载文件系统、分离磁盘和重新挂载,每一步都有详细的步骤和注意事项,确保... 目录引言第一步:卸载文件系统第二步:分离磁盘第三步:重新挂载引言在 linux 服务器上移除并重新挂p

使用MyBatis TypeHandler实现数据加密与解密的具体方案

《使用MyBatisTypeHandler实现数据加密与解密的具体方案》在我们日常的开发工作中,经常会遇到一些敏感数据需要存储,比如用户的手机号、身份证号、银行卡号等,为了保障数据安全,我们通常会对... 目录1. 核心概念:什么是 TypeHandler?2. 实战场景3. 代码实现步骤步骤 1:定义 E

使用C#导出Excel数据并保存多种格式的完整示例

《使用C#导出Excel数据并保存多种格式的完整示例》在现代企业信息化管理中,Excel已经成为最常用的数据存储和分析工具,从员工信息表、销售数据报表到财务分析表,几乎所有部门都离不开Excel,本文... 目录引言1. 安装 Spire.XLS2. 创建工作簿和填充数据3. 保存为不同格式4. 效果展示5

Python多任务爬虫实现爬取图片和GDP数据

《Python多任务爬虫实现爬取图片和GDP数据》本文主要介绍了基于FastAPI开发Web站点的方法,包括搭建Web服务器、处理图片资源、实现多任务爬虫和数据可视化,同时,还简要介绍了Python爬... 目录一. 基于FastAPI之Web站点开发1. 基于FastAPI搭建Web服务器2. Web服务

MySQL 批量插入的原理和实战方法(快速提升大数据导入效率)

《MySQL批量插入的原理和实战方法(快速提升大数据导入效率)》在日常开发中,我们经常需要将大量数据批量插入到MySQL数据库中,本文将介绍批量插入的原理、实现方法,并结合Python和PyMySQ... 目录一、批量插入的优势二、mysql 表的创建示例三、python 实现批量插入1. 安装 PyMyS