探索性数据分析(EDA):从数据中发现洞察力

2023-11-29 11:15

本文主要是介绍探索性数据分析(EDA):从数据中发现洞察力,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

写在开头

在数据科学的世界中,探索性数据分析(Exploratory Data Analysis,EDA)是一项至关重要的任务,它能够帮助我们深入了解数据、发现潜在的模式,并为进一步的分析和建模提供基础。本篇博客将介绍探索性数据分析的基本技术和方法,通过具体的数字、场景和代码,帮助读者在数据的海洋中发现有价值的信息和洞察力。

1. EDA的基本步骤

探索性数据分析通常包括以下基本步骤:

  • 1.数据收集: 获取数据集,可以来自数据库、文件、API等数据源。确保了解数据的来源、格式以及数据集中包含的变量。
  • 2.初步观察: 对数据集进行初步观察,了解数据的基本信息,包括数据的维度、列名、数据类型等。
  • 3.数据清洗: 进行数据清洗,处理缺失值、异常值、重复值等。确保数据的准确性和完整性。
  • 4.单变量分析: 对单个变量进行分析,包括描述性统计、频数分布、直方图等。这有助于了解每个变量的分布和特征。
  • 5.双变量分析: 探索变量之间的关系,通过散点图、相关性分析等方法来了解两个变量之间的关联性。
  • 6.多变量分析: 考虑多个变量之间的关系,使用热力图、散点矩阵等方法,了解变量之间的复杂关系。
  • 7.探索性可视化: 使用各种图表(如散点图、箱线图、直方图)进行可视化分析,直观地展示数据的分布、趋势和异常。
  • 8.数据变换和特征工程: 对数据进行转换或特征工程,创建新的变量,以便更好地进行建模和分析。
  • 9.统计检验: 使用统计方法验证假设,例如t检验、方差分析等,以确认观察到的模式是否具有统计学意义。
  • 10.建模: 如果有兴趣,可以尝试建立一些简单的模型,以进一步探索数据中的模式和趋势。
  • 11.总结和结论: 总结整个EDA的过程,提炼出关键观察、发现的模式,并得出初步结论。
  • 12.报告和可视化: 将分析结果以清晰的图表和报告的形式呈现,确保能够有效地传达数据的关键信息。
  • 13.反馈和迭代: 根据反馈和可能的需求,对分析进行迭代,进一步深入研究特定领域或问题。

1.1 数据概览

首先,我们需要对数据有一个整体的了解。使用 Pandas 库可以轻松查看数据的前几行,了解数据的列名、类型等信息:

import pandas as pd# 读取数据
data = pd.read_csv('your_data.csv')# 查看前几行
print(data.head())

1.2 描述性统计

使用 Pandas 的 describe() 方法可以生成对数值型数据的基本描述统计信息,如均值、标准差、最小值、25%、50%、75% 分位数等:

# 描述性统计
print(data.describe())

1.3 借用一些EDA库

pandas_profiling可以快速帮助理解数据,数据量大的话,可能耗费时间比较长。

import pandas_profiling#预览数据
pandas_profiling.ProfileReport(data)

missinggo是一个可视化的缺失值库,可以帮助我们快速了解数据中的缺失情况。

import missingno as msno# 可视化缺失值
msno.matrix(df)
plt.title('Missing Values Matrix')
plt.show()

2. 数据可视化

2.1 直方图

直方图是一种展示数据分布的有效方式。通过 Matplotlib 或 Seaborn 库,我们可以轻松绘制直方图:

import matplotlib.pyplot as plt
import seaborn as sns# 绘制直方图
plt.figure(figsize

这篇关于探索性数据分析(EDA):从数据中发现洞察力的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/432611

相关文章

Linux下利用select实现串口数据读取过程

《Linux下利用select实现串口数据读取过程》文章介绍Linux中使用select、poll或epoll实现串口数据读取,通过I/O多路复用机制在数据到达时触发读取,避免持续轮询,示例代码展示设... 目录示例代码(使用select实现)代码解释总结在 linux 系统里,我们可以借助 select、

C#使用iText获取PDF的trailer数据的代码示例

《C#使用iText获取PDF的trailer数据的代码示例》开发程序debug的时候,看到了PDF有个trailer数据,挺有意思,于是考虑用代码把它读出来,那么就用到我们常用的iText框架了,所... 目录引言iText 核心概念C# 代码示例步骤 1: 确保已安装 iText步骤 2: C# 代码程

Pandas处理缺失数据的方式汇总

《Pandas处理缺失数据的方式汇总》许多教程中的数据与现实世界中的数据有很大不同,现实世界中的数据很少是干净且同质的,本文我们将讨论处理缺失数据的一些常规注意事项,了解Pandas如何表示缺失数据,... 目录缺失数据约定的权衡Pandas 中的缺失数据None 作为哨兵值NaN:缺失的数值数据Panda

C++中处理文本数据char与string的终极对比指南

《C++中处理文本数据char与string的终极对比指南》在C++编程中char和string是两种用于处理字符数据的类型,但它们在使用方式和功能上有显著的不同,:本文主要介绍C++中处理文本数... 目录1. 基本定义与本质2. 内存管理3. 操作与功能4. 性能特点5. 使用场景6. 相互转换核心区别

python库pydantic数据验证和设置管理库的用途

《python库pydantic数据验证和设置管理库的用途》pydantic是一个用于数据验证和设置管理的Python库,它主要利用Python类型注解来定义数据模型的结构和验证规则,本文给大家介绍p... 目录主要特点和用途:Field数值验证参数总结pydantic 是一个让你能够 confidentl

JAVA实现亿级千万级数据顺序导出的示例代码

《JAVA实现亿级千万级数据顺序导出的示例代码》本文主要介绍了JAVA实现亿级千万级数据顺序导出的示例代码,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面... 前提:主要考虑控制内存占用空间,避免出现同时导出,导致主程序OOM问题。实现思路:A.启用线程池

SpringBoot分段处理List集合多线程批量插入数据方式

《SpringBoot分段处理List集合多线程批量插入数据方式》文章介绍如何处理大数据量List批量插入数据库的优化方案:通过拆分List并分配独立线程处理,结合Spring线程池与异步方法提升效率... 目录项目场景解决方案1.实体类2.Mapper3.spring容器注入线程池bejsan对象4.创建

PHP轻松处理千万行数据的方法详解

《PHP轻松处理千万行数据的方法详解》说到处理大数据集,PHP通常不是第一个想到的语言,但如果你曾经需要处理数百万行数据而不让服务器崩溃或内存耗尽,你就会知道PHP用对了工具有多强大,下面小编就... 目录问题的本质php 中的数据流处理:为什么必不可少生成器:内存高效的迭代方式流量控制:避免系统过载一次性

C#实现千万数据秒级导入的代码

《C#实现千万数据秒级导入的代码》在实际开发中excel导入很常见,现代社会中很容易遇到大数据处理业务,所以本文我就给大家分享一下千万数据秒级导入怎么实现,文中有详细的代码示例供大家参考,需要的朋友可... 目录前言一、数据存储二、处理逻辑优化前代码处理逻辑优化后的代码总结前言在实际开发中excel导入很

MyBatis-plus处理存储json数据过程

《MyBatis-plus处理存储json数据过程》文章介绍MyBatis-Plus3.4.21处理对象与集合的差异:对象可用内置Handler配合autoResultMap,集合需自定义处理器继承F... 目录1、如果是对象2、如果需要转换的是List集合总结对象和集合分两种情况处理,目前我用的MP的版本