使用机器学习来测量基因间的相关性:一个多特征模型(Using Machine Learning to Measure Relatedness Between Genes)

本文主要是介绍使用机器学习来测量基因间的相关性:一个多特征模型(Using Machine Learning to Measure Relatedness Between Genes),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1. 摘要

    测量一对基因间的条件亲缘关系是计算生物学的一项基本技术,也是一个重大的挑战。论文提出了一个新的机器学习模型—多特征相关性(MFR),通过将表达相似度和基于先验知识的相似度纳入评估标准,来准确地测量一对基因之间的条件相关性。

2. 介绍

    基因之间的相互作用通常被建模为一对基因之间0/1(非相互作用/相互作用)的二元关系,而亲缘性则意味着一对基因之间的某种程度的关系。

    相关性可以通过两种特征来衡量:表达相似度和基于先验知识的相似度。第一种特性通常是在一定条件下测量一对基因的共表达水平,第二种类型的特征通常是使用公共生物数据和功能注释数据库来测量基因的相关性。

    论文提出的机器学习模型MFR,通过使用带线性核的支持向量机,整合表达相似度和基于先验知识的相似度,保留并推荐具有高表达相似性和高先验知识相似性的基因对,准确地测量基因间的条件相关性。

3. 材料和方法

3.1 MFR工作流程

如图1所示,MFR工作流程有5个步骤:
(i)从已发表的研究成果中收集基因对样本;
(ii)从GEO、GO和orthoDB数据库中提取基因特征,用于评估基于相似性的基因对功能;
(iii)利用4个基因特征和反应体数据库和HTRIdb数据库计算12个基于相似性的基因对特征
(iv)通过10倍交叉验证构建基于svm的模型。
(v)实验验证基因-基因相互作用,预测基因功能,并与其他模型和方法进行比较。

3.2 基因特征

    MFR使用12个相似的基因对特征来评估一对基因之间的条件相关性。

表达数据。使用GEO数据库中的15679个样本作为表达数据源,进行预处理步骤,最终保留16,391个编码蛋白的基因,以供进一步的表达数据分析。

基因本体论数据。 GO注释使用GO数据库(共435975)中43340个与实验相关的生物学过程。

相应的数据。使用了5000多个物种的2200万个基因,其中包括20个物种的169376个人类同源基因。

亚细胞定位数据。从GO数据库中获得的人类基因的160537个细胞成分注释被用作亚细胞源来衡量一对基因之间亚细胞定位的相似性。

3.3 基因对特征计算

    MFR中使用了12个基于相似性的基因对特征,定义如下。

    7个基于表达相似性的特征:每个基因exp1和exp2的平均表达水平,PCC度量的线性共表达关系,SRC和MI用于测量的非线性共表达关系,MI度量的两个基因表达水平的联合分布与因子边际分布的产物相似性。

GO相似性(goSim),因为相互作用的基因被认为参与了类似的生物过程:

在这里插入图片描述
其中,Oi和Oj分别表示用于注释基因i和j的GO项集;A(o, q)是GO项o和q的共同祖先集;P(o)为GO项o实例注释的一个基因的概率;D(o)和D(root)分别表示GO项o的后代GO项集和根GO项集。

亚细胞定位相似度(lcSim),用来计算两个蛋白质编码基因出现在一个普通细胞器中的概率:
在这里插入图片描述

其中Li和Lj是由基因i和j编码的亚细胞定位组。

同源相似性(hgSim),使用改进的皮尔逊相关方法:

在这里插入图片描述
其中,ni和nj分别为基因组中包含i和j基因同源基因的物种数目;N =21 是我们使用的物种 的总数和,M为基因组中同时包含i和j基因同源基因的物种数量。

基因对的归一化距离(rxSim),从反应体途径得到的202772个基因-基因相互作用被用来构建一个未加权图,其中节点表示基因,边表示基因之间的相互作用:

在这里插入图片描述
其中disi,j为基因i与j之间的最短距离,dismax为图中最远的一对基因之间的最短距离。

基于转录调控相似度(trSim),如果有一个基因对有转录调控相互作用的记录,trSim为1,否则为0。

3.4 支持向量机模型

由于文章在服务器上,全文详见:
http://bbit.vip/service/main.php?version=1&type=article&id=87

这篇关于使用机器学习来测量基因间的相关性:一个多特征模型(Using Machine Learning to Measure Relatedness Between Genes)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/432420

相关文章

使用Python实现IP地址和端口状态检测与监控

《使用Python实现IP地址和端口状态检测与监控》在网络运维和服务器管理中,IP地址和端口的可用性监控是保障业务连续性的基础需求,本文将带你用Python从零打造一个高可用IP监控系统,感兴趣的小伙... 目录概述:为什么需要IP监控系统使用步骤说明1. 环境准备2. 系统部署3. 核心功能配置系统效果展

使用Java将各种数据写入Excel表格的操作示例

《使用Java将各种数据写入Excel表格的操作示例》在数据处理与管理领域,Excel凭借其强大的功能和广泛的应用,成为了数据存储与展示的重要工具,在Java开发过程中,常常需要将不同类型的数据,本文... 目录前言安装免费Java库1. 写入文本、或数值到 Excel单元格2. 写入数组到 Excel表格

redis中使用lua脚本的原理与基本使用详解

《redis中使用lua脚本的原理与基本使用详解》在Redis中使用Lua脚本可以实现原子性操作、减少网络开销以及提高执行效率,下面小编就来和大家详细介绍一下在redis中使用lua脚本的原理... 目录Redis 执行 Lua 脚本的原理基本使用方法使用EVAL命令执行 Lua 脚本使用EVALSHA命令

Java 中的 @SneakyThrows 注解使用方法(简化异常处理的利与弊)

《Java中的@SneakyThrows注解使用方法(简化异常处理的利与弊)》为了简化异常处理,Lombok提供了一个强大的注解@SneakyThrows,本文将详细介绍@SneakyThro... 目录1. @SneakyThrows 简介 1.1 什么是 Lombok?2. @SneakyThrows

使用Python和Pyecharts创建交互式地图

《使用Python和Pyecharts创建交互式地图》在数据可视化领域,创建交互式地图是一种强大的方式,可以使受众能够以引人入胜且信息丰富的方式探索地理数据,下面我们看看如何使用Python和Pyec... 目录简介Pyecharts 简介创建上海地图代码说明运行结果总结简介在数据可视化领域,创建交互式地

Java Stream流使用案例深入详解

《JavaStream流使用案例深入详解》:本文主要介绍JavaStream流使用案例详解,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录前言1. Lambda1.1 语法1.2 没参数只有一条语句或者多条语句1.3 一个参数只有一条语句或者多

Java Spring 中 @PostConstruct 注解使用原理及常见场景

《JavaSpring中@PostConstruct注解使用原理及常见场景》在JavaSpring中,@PostConstruct注解是一个非常实用的功能,它允许开发者在Spring容器完全初... 目录一、@PostConstruct 注解概述二、@PostConstruct 注解的基本使用2.1 基本代

C#使用StackExchange.Redis实现分布式锁的两种方式介绍

《C#使用StackExchange.Redis实现分布式锁的两种方式介绍》分布式锁在集群的架构中发挥着重要的作用,:本文主要介绍C#使用StackExchange.Redis实现分布式锁的... 目录自定义分布式锁获取锁释放锁自动续期StackExchange.Redis分布式锁获取锁释放锁自动续期分布式

springboot使用Scheduling实现动态增删启停定时任务教程

《springboot使用Scheduling实现动态增删启停定时任务教程》:本文主要介绍springboot使用Scheduling实现动态增删启停定时任务教程,具有很好的参考价值,希望对大家有... 目录1、配置定时任务需要的线程池2、创建ScheduledFuture的包装类3、注册定时任务,增加、删

使用Python实现矢量路径的压缩、解压与可视化

《使用Python实现矢量路径的压缩、解压与可视化》在图形设计和Web开发中,矢量路径数据的高效存储与传输至关重要,本文将通过一个Python示例,展示如何将复杂的矢量路径命令序列压缩为JSON格式,... 目录引言核心功能概述1. 路径命令解析2. 路径数据压缩3. 路径数据解压4. 可视化代码实现详解1