【数值计算方法(黄明游)】常微分方程初值问题的数值积分法:欧拉方法(向前Euler)【理论到程序】

本文主要是介绍【数值计算方法(黄明游)】常微分方程初值问题的数值积分法:欧拉方法(向前Euler)【理论到程序】,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • 一、数值积分法
    • 1. 一般步骤
    • 2. 数值方法
  • 二、欧拉方法(Euler Method)
    • 1. 向前欧拉法(前向欧拉法)
      • a. 基本理论
      • b. 典例解析
      • c. 算法实现

  常微分方程初值问题的数值积分法是一种通过数值方法求解给定初始条件下的常微分方程(Ordinary Differential Equations, ODEs)的问题。

一、数值积分法

1. 一般步骤

  • 确定微分方程:

    • 给定微分方程组 y ′ ( x ) = f ( x , y ( x ) ) y'(x) = f(x, y(x)) y(x)=f(x,y(x))
  • 确定初始条件:

    • 初值问题包含一个初始条件 y ( a ) = y 0 y(a) = y_0 y(a)=y0,其中 a a a 是定义域的起始点, y 0 y_0 y0 是初始值。
  • 选择数值方法:

    • 选择适当的数值方法来近似解(需要考虑精度、稳定性和计算效率),常见的数值方法包括欧拉方法、改进的欧拉方法、Runge-Kutta 方法等。
  • 离散化定义域:

    • 将定义域 [ a , b ] [a, b] [a,b] 分割为若干小步,即选择合适的步长 h h h。通常,较小的步长能够提高数值解的精度,但也增加计算成本。
  • 数值迭代:

    • 使用选定的数值方法进行迭代计算:根据选择的方法,计算下一个点的函数值,并更新解。
  • 判断停止条件:

    • 判断是否达到满足指定精度的近似解:可以使用某种误差估计方法,例如控制局部截断误差或全局误差。
  • 输出结果:

    • 最终得到在给定定义域上满足初值问题的近似解。

2. 数值方法

  1. 欧拉方法(Euler Method):

    • 基本思想:根据微分方程的定义,使用离散步长逼近导数,进而逼近下一个点的函数值。
    • 公式: y n + 1 = y n + h f ( t n , y n ) y_{n+1} = y_n + h f(t_n, y_n) yn+1=yn+hf(tn,yn)
      其中, y n y_n yn是第 n n n 步的函数值, h h h是步长, f ( t n , y n ) f(t_n, y_n) f(tn,yn) 是在点 ( t n , y n ) (t_n, y_n) (tn,yn) 处的导数。
  2. 改进的欧拉方法(Improved Euler Method 或梯形法 Trapezoidal Rule):

    • 基本思想:使用两次近似来提高精度,首先使用欧拉方法计算中间点,然后用该点的导数估计值来计算下一个点。
    • 公式: y n + 1 = y n + h 2 [ f ( t n , y n ) + f ( t n + 1 , y n + h f ( t n , y n ) ) ] y_{n+1} = y_n + \frac{h}{2} [f(t_n, y_n) + f(t_{n+1}, y_n + hf(t_n, y_n))] yn+1=yn+2h[f(tn,yn)+f(tn+1,yn+hf(tn,yn))]
  3. Runge-Kutta 方法:

    • 基本思想:通过多个阶段的计算来提高精度。其中最常见的是四阶 Runge-Kutta 方法。
    • 公式:
      k 1 = h f ( t n , y n ) k_1 = hf(t_n, y_n) k1=hf(tn,yn) k 2 = h f ( t n + h 2 , y n + k 1 2 ) k_2 = hf(t_n + \frac{h}{2}, y_n + \frac{k_1}{2}) k2=hf(tn+2h,yn+2k1) k 3 = h f ( t n + h 2 , y n + k 2 2 ) k_3 = hf(t_n + \frac{h}{2}, y_n + \frac{k_2}{2}) k3=hf(tn+2h,yn+2k2) k 4 = h f ( t n + h , y n + k 3 ) k_4 = hf(t_n + h, y_n + k_3) k4=hf(tn+h,yn+k3) y n + 1 = y n + 1 6 ( k 1 + 2 k 2 + 2 k 3 + k 4 ) y_{n+1} = y_n + \frac{1}{6}(k_1 + 2k_2 + 2k_3 + k_4) yn+1=yn+61(k1+2k2+2k3+k4)

  这些方法中,步长 h h h 是一个关键参数,它决定了离散化的程度,选择合适的步长对于数值解的准确性和稳定性非常重要。

二、欧拉方法(Euler Method)

1. 向前欧拉法(前向欧拉法)

a. 基本理论

  1. 等距节点组:

    • { X n } \{X_n\} {Xn}被定义为区间 [ a , b ] [a, b] [a,b] 上的等距节点组,其中 X n = a + n h X_n = a + nh Xn=a+nh h h h 是步长, n n n 是节点索引,这样的离散化有助于数值计算。
  2. 向前差商近似微商:

    • 在节点 X n X_n Xn 处,通过向前差商 y ( X n + 1 ) − y ( X n ) h \frac{y(X_{n+1}) - y(X_n)}{h} hy(Xn+1)y(Xn) 近似替代微分方程 y ′ ( x ) = f ( x , y ( x ) ) y'(x) = f(x, y(x)) y(x)=f(x,y(x)) 中的导数项,得到 y ′ ( X n ) ≈ y ( X n + 1 ) − y ( X n ) h = f ( X n , y ( X n ) ) y'(X_n) \approx \frac{y(X_{n+1}) - y(X_n)}{h} = f(X_n, y(X_n)) y(Xn)hy(Xn+1)y(Xn)=f(Xn,y(Xn))
    • 这个近似通过将差商等于导数的思想,将微分方程转化为递推关系式。
  3. 递推公式:

    • 将上述近似公式改为等式,得到递推公式 y n + 1 = y n + h f ( X n , y n ) y_{n+1} = y_n + hf(X_n, y_n) yn+1=yn+hf(Xn,yn)
    • 这个公式是 Euler 方法的核心,通过这个公式可以逐步计算得到近似解的数值。
  4. 步骤解释:

    • n = 0 n=0 n=0 时,使用初始条件 y 0 y_0 y0 计算 y 1 y_1 y1
    • 然后,利用 y 1 y_1 y1 计算 y 2 y_2 y2,以此类推,得到 y n y_n yn,直到 n = N n=N n=N,其中 N N N 是节点数。
    • 这个过程形成了一个逐步逼近微分方程解的序列。
  5. 几何解释:

    • 在几何上,Euler 方法的求解过程可以解释为在积分曲线上通过连接相邻点的折线来逼近微分方程的解,因而被称为折线法
  6. 截断误差:

    • 通过 Taylor 展开,可以得到 Euler 方法的截断误差公式(忽略 h 2 h^2 h2 项) y ( x n + 1 ) = y ( x n ) + h f ( X n , y n ) + O ( h 2 ) y(x_{n+1}) = y(x_n) + hf(X_n, y_n) + O(h^2) y(xn+1)=y(xn)+hf(Xn,yn)+O(h2)
    • 这表明 Euler 方法的误差主要来自于 h h h 的一阶项,因此选择较小的步长可以提高方法的精度。

b. 典例解析

在这里插入图片描述

计算过程:

  1. 初始化: x 0 = 0 x_0 = 0 x0=0, y 0 = 1 y_0 = 1 y0=1.
  2. 计算 x 1 x_1 x1 y 1 y_1 y1
    x 1 = x 0 + h = 0.1 x_1 = x_0+h=0.1 x1=x0+h=0.1 y 1 = y 0 + h f ( x 0 , y 0 ) = 1 + 0.1 ⋅ ( y 0 − 2 x 0 y 0 ) = 1 + 0.1 ⋅ 1 = 1.1 y_1 = y_0 + h f(x_0, y_0) = 1 + 0.1 \cdot (y_0-\frac{2x_0}{y_0}) = 1 + 0.1 \cdot 1 = 1.1 y1=y0+hf(x0,y0)=1+0.1(y0y02x0)=1+0.11=1.1.
  3. 计算 x 2 x_2 x2 y 2 y_2 y2
    x 2 = x 1 + h = 0.2 x_2 = x_1+h=0.2 x2=x1+h=0.2 y 2 = y 1 + h f ( x 1 , y 1 ) = 1.1 + 0.1 ⋅ ( y 1 − 2 x 1 y 1 ) = 1.1 + 0.1 ⋅ ( 1.1 − 0.181819 ) = 1.191818 y_2 = y_1 + h f(x_1, y_1) = 1.1 + 0.1 \cdot (y_1-\frac{2x_1}{y_1}) = 1.1 + 0.1 \cdot (1.1-0.181819)= 1.191818 y2=y1+hf(x1,y1)=1.1+0.1(y1y12x1)=1.1+0.1(1.10.181819)=1.191818.
  4. 计算 x 3 x_3 x3 y 3 y_3 y3
    … … … … … … ……………… ………………

c. 算法实现

import numpy as np
import matplotlib.pyplot as pltdef forward_euler(f, y0, a, b, h):"""使用向前欧拉法求解一阶常微分方程初值问题Parameters:- f: 函数,表示微分方程的右侧项,形式为 f(x, y)- y0: 初始条件,表示在 x=a 处的函数值- a: 区间起点- b: 区间终点- h: 步长Returns:- x_values: 区间 [a, b] 上的离散节点- y_values: 对应节点上的函数值的近似解"""num_steps = int((b - a) / h) + 1  # 计算步数x_values = np.linspace(a, b, num_steps)  # 生成离散节点y_values = np.zeros(num_steps)  # 初始化结果数组y_values[0] = y0  # 设置初始条件# 使用向前欧拉法进行逐步迭代for i in range(1, num_steps):x = x_values[i - 1]y = y_values[i - 1]y_values[i] = y + h * f(x, y)return x_values, y_values# 示例:求解 y' = y - 2x/y,初始条件 y(0) = 1 在区间 [0, 1] 上的近似解
def example_function(x, y):return y - 2*x/ya, b = 0, 1  # 区间 [a, b]
y0 = 1  # 初始条件 y(0) = 1
h = 0.1  # 步长x_values, y_values = forward_euler(example_function, y0, a, b, h)# 绘制结果
plt.plot(x_values, y_values, label='Forward Euler')
plt.plot(x_values, np.sqrt(1+2*x_values), label='Exact Solution')
plt.xlabel('x')
plt.ylabel('y')
plt.legend()
plt.show()

在这里插入图片描述
在这里插入图片描述

这篇关于【数值计算方法(黄明游)】常微分方程初值问题的数值积分法:欧拉方法(向前Euler)【理论到程序】的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/432289

相关文章

检查 Nginx 是否启动的几种方法

《检查Nginx是否启动的几种方法》本文主要介绍了检查Nginx是否启动的几种方法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学... 目录1. 使用 systemctl 命令(推荐)2. 使用 service 命令3. 检查进程是否存在4

Java方法重载与重写之同名方法的双面魔法(最新整理)

《Java方法重载与重写之同名方法的双面魔法(最新整理)》文章介绍了Java中的方法重载Overloading和方法重写Overriding的区别联系,方法重载是指在同一个类中,允许存在多个方法名相同... 目录Java方法重载与重写:同名方法的双面魔法方法重载(Overloading):同门师兄弟的不同绝

MySQL字符串转数值的方法全解析

《MySQL字符串转数值的方法全解析》在MySQL开发中,字符串与数值的转换是高频操作,本文从隐式转换原理、显式转换方法、典型场景案例、风险防控四个维度系统梳理,助您精准掌握这一核心技能,需要的朋友可... 目录一、隐式转换:自动但需警惕的&ld编程quo;双刃剑”二、显式转换:三大核心方法详解三、典型场景

MySQL快速复制一张表的四种核心方法(包括表结构和数据)

《MySQL快速复制一张表的四种核心方法(包括表结构和数据)》本文详细介绍了四种复制MySQL表(结构+数据)的方法,并对每种方法进行了对比分析,适用于不同场景和数据量的复制需求,特别是针对超大表(1... 目录一、mysql 复制表(结构+数据)的 4 种核心方法(面试结构化回答)方法 1:CREATE

详解C++ 存储二进制数据容器的几种方法

《详解C++存储二进制数据容器的几种方法》本文主要介绍了详解C++存储二进制数据容器,包括std::vector、std::array、std::string、std::bitset和std::ve... 目录1.std::vector<uint8_t>(最常用)特点:适用场景:示例:2.std::arra

springboot中配置logback-spring.xml的方法

《springboot中配置logback-spring.xml的方法》文章介绍了如何在SpringBoot项目中配置logback-spring.xml文件来进行日志管理,包括如何定义日志输出方式、... 目录一、在src/main/resources目录下,也就是在classpath路径下创建logba

SQL Server中行转列方法详细讲解

《SQLServer中行转列方法详细讲解》SQL行转列、列转行可以帮助我们更方便地处理数据,生成需要的报表和结果集,:本文主要介绍SQLServer中行转列方法的相关资料,需要的朋友可以参考下... 目录前言一、为什么需要行转列二、行转列的基本概念三、使用PIVOT运算符进行行转列1.创建示例数据表并插入数

C++打印 vector的几种方法小结

《C++打印vector的几种方法小结》本文介绍了C++中遍历vector的几种方法,包括使用迭代器、auto关键字、typedef、计数器以及C++11引入的范围基础循环,具有一定的参考价值,感兴... 目录1. 使用迭代器2. 使用 auto (C++11) / typedef / type alias

python项目打包成docker容器镜像的两种方法实现

《python项目打包成docker容器镜像的两种方法实现》本文介绍两种将Python项目打包为Docker镜像的方法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要... 目录简单版:(一次成功,后续下载对应的软件依赖)第一步:肯定是构建dockerfile,如下:第二步

C# GC回收的方法实现

《C#GC回收的方法实现》本文主要介绍了C#GC回收的方法实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 目录 一、什么是 GC? 二、GC 管理的是哪部分内存? 三、GC 什么时候触发?️ 四、GC 如何判断一个对象是“垃圾