LLM Fine-Tuning大模型FT方法

2023-11-29 06:30
文章标签 方法 模型 llm tuning fine ft

本文主要是介绍LLM Fine-Tuning大模型FT方法,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Here we discuss fine-tuning Llama 2 with a couple of different recipes. We will cover two scenarios here:

1. Parameter Efficient Model Fine-Tuning

This helps make the fine-tuning process more affordable even on 1 consumer grade GPU. These methods enable us to keep the whole model frozen and to just add tiny learnable parameters/ layers into the model. In this way, we just train a very tiny portion of the parameters. The most famous method in this category is LORA, LLaMA Adapter and Prefix-tuning.

These methods will address three aspects:

  1. Cost of full fine-tuning – these methods only train a small set of extra parameters instead of the full model, this makes it possible to run these on consumer GPUs.

  2. Cost of deployment – for each fine-tuned downstream model we need to deploy a separate model; however, when using these methods, only a small set of parameters (few MB instead of several GBs) of the pretrained model can do the job. In this case, for each task we only add these extra parameters on top of the pretrained model so pretrained models can be assumed as backbone and these parameters as heads for the model on different tasks.

  3. Catastrophic forgetting — these methods also help with forgetting the first task that can happen in fine-tunings.

HF PEFT library provides an easy way of using these methods which we make use of here. Please read more here.

2. Full/ Partial Parameter Fine-Tuning

Full parameter fine-tuning has its own advantages, in this method there are multiple strategies that can help:

  1. Keep the pretrained model frozen and only fine-tune the task head for example, the classifier model.

  2. Keep the pretrained model frozen and add a few fully connected layers on the top.

  3. Fine-tuning on all the layers.

You can also keep most of the layers frozen and only fine-tune a few layers. There are many different techniques to choose from to freeze/unfreeze layers based on different criteria.

在这里插入图片描述

In this scenario depending on the model size, you might need to go beyond one GPU, especially if your model does not fit into one GPU for training. In this case Llama 2 7B parameter won’t fit into one gpu. The way you want to think about it is, you would need enough GPU memory to keep model parameters, gradients and optimizer states. Where each of these, depending on the precision you are training, can take up multiple times of your parameter count x precision( depending on if its fp32/ 4 bytes, fp16/2 bytes/ bf16/2 bytes). For example AdamW optimizer keeps 2 parameters for each of your parameters and in many cases these are kept in fp32. This implies that depending on how many layers you are training/ unfreezing your GPU memory can grow beyond one GPU.

FSDP (Fully Sharded Data Parallel)

Pytorch has the FSDP package for training models that do not fit into one GPU. FSDP lets you train a much larger model with the same amount of resources. Prior to FSDP was DDP (Distributed Data Parallel) where each GPU was holding a full replica of the model and would only shard the data. At the end of backward pass it would sync up the gradients.

FSDP extends this idea, not only sharding the data but also model parameters, gradients and optimizer states. This means each GPU will only keep one shard of the model. This will result in huge memory savings that enable us to fit a much larger model into the same number of GPU. As an example in DDP the most you could fit into a GPU with 16GB memory is a model around 700M parameters. So, suppose you had 4 GPUs, in this case even though you access 4 GPUs, you still can’t scale beyond the model size that can fit into one GPU. However with FSDP you can fit a 3B model into 4 GPUs, > 4x larger model.

Please read more on FSDP here & get started with FSDP here.

To boost the performance of fine-tuning with FSDP, we can make use a number of features such as:

  1. Mixed Precision which in FSDP is much more flexible compared to Autocast. It gives user control over setting precision for model parameters, buffers and gradients.

  2. Activation Checkpointing which is a technique to save memory by discarding the intermediate activation in forward pass instead of keeping it in the memory with the cost recomputing them in the backward pass. FSDP Activation checkpointing is shard aware meaning we need to apply it after wrapping the model with FSDP. In our script we are making use of that.

  3. auto_wrap_policy Which is the way to specify how FSDP would partition the model, there is default support for transformer wrapping policy. This allows FSDP to form each FSDP unit ( partition of the model ) based on the transformer class in the model. To identify this layer in the model, you need to look at the layer that wraps both the attention layer and MLP. This helps FSDP have more fine-grained units for communication that help with optimizing the communication cost.

这篇关于LLM Fine-Tuning大模型FT方法的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!


原文地址:
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.chinasem.cn/article/431794

相关文章

MySQL启动报错:InnoDB表空间丢失问题及解决方法

《MySQL启动报错:InnoDB表空间丢失问题及解决方法》在启动MySQL时,遇到了InnoDB:Tablespace5975wasnotfound,该错误表明MySQL在启动过程中无法找到指定的s... 目录mysql 启动报错:InnoDB 表空间丢失问题及解决方法错误分析解决方案1. 启用 inno

SpringBoot整合Sa-Token实现RBAC权限模型的过程解析

《SpringBoot整合Sa-Token实现RBAC权限模型的过程解析》:本文主要介绍SpringBoot整合Sa-Token实现RBAC权限模型的过程解析,本文给大家介绍的非常详细,对大家的学... 目录前言一、基础概念1.1 RBAC模型核心概念1.2 Sa-Token核心功能1.3 环境准备二、表结

Python函数返回多个值的多种方法小结

《Python函数返回多个值的多种方法小结》在Python中,函数通常用于封装一段代码,使其可以重复调用,有时,我们希望一个函数能够返回多个值,Python提供了几种不同的方法来实现这一点,需要的朋友... 目录一、使用元组(Tuple):二、使用列表(list)三、使用字典(Dictionary)四、 使

Linux查看系统盘和SSD盘的容量、型号及挂载信息的方法

《Linux查看系统盘和SSD盘的容量、型号及挂载信息的方法》在Linux系统中,管理磁盘设备和分区是日常运维工作的重要部分,而lsblk命令是一个强大的工具,它用于列出系统中的块设备(blockde... 目录1. 查看所有磁盘的物理信息方法 1:使用 lsblk(推荐)方法 2:使用 fdisk -l(

使用Python获取JS加载的数据的多种实现方法

《使用Python获取JS加载的数据的多种实现方法》在当今的互联网时代,网页数据的动态加载已经成为一种常见的技术手段,许多现代网站通过JavaScript(JS)动态加载内容,这使得传统的静态网页爬取... 目录引言一、动态 网页与js加载数据的原理二、python爬取JS加载数据的方法(一)分析网络请求1

MySQL查看表的最后一个ID的常见方法

《MySQL查看表的最后一个ID的常见方法》在使用MySQL数据库时,我们经常会遇到需要查看表中最后一个id值的场景,无论是为了调试、数据分析还是其他用途,了解如何快速获取最后一个id都是非常实用的技... 目录背景介绍方法一:使用MAX()函数示例代码解释适用场景方法二:按id降序排序并取第一条示例代码解

Python中合并列表(list)的六种方法小结

《Python中合并列表(list)的六种方法小结》本文主要介绍了Python中合并列表(list)的六种方法小结,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋... 目录一、直接用 + 合并列表二、用 extend() js方法三、用 zip() 函数交叉合并四、用

Java 中的跨域问题解决方法

《Java中的跨域问题解决方法》跨域问题本质上是浏览器的一种安全机制,与Java本身无关,但Java后端开发者需要理解其来源以便正确解决,下面给大家介绍Java中的跨域问题解决方法,感兴趣的朋友一起... 目录1、Java 中跨域问题的来源1.1. 浏览器同源策略(Same-Origin Policy)1.

Java Stream.reduce()方法操作实际案例讲解

《JavaStream.reduce()方法操作实际案例讲解》reduce是JavaStreamAPI中的一个核心操作,用于将流中的元素组合起来产生单个结果,:本文主要介绍JavaStream.... 目录一、reduce的基本概念1. 什么是reduce操作2. reduce方法的三种形式二、reduce

MybatisX快速生成增删改查的方法示例

《MybatisX快速生成增删改查的方法示例》MybatisX是基于IDEA的MyBatis/MyBatis-Plus开发插件,本文主要介绍了MybatisX快速生成增删改查的方法示例,文中通过示例代... 目录1 安装2 基本功能2.1 XML跳转2.2 代码生成2.2.1 生成.xml中的sql语句头2