大语言模型:以Amazon Titan等大语言模型为例介绍

2023-11-28 08:04

本文主要是介绍大语言模型:以Amazon Titan等大语言模型为例介绍,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

大语言模型(Large Language Model)是一种人工智能技术,通过对海量文本数据进行训练,学习语言的结构、规则和语义,从而可以生成具有自然语言风格的文本或回答自然语言的问题。大语言模型一般基于神经网络技术,通常包含数十亿个参数,可以通过大规模的训练数据进行训练和优化。

2023 年 4 月,亚马逊云科技宣布推出 Amazon Titan 大语言模型。Titan基于Transformer架构,其基础模型目前包括了两个全新的大语言模型:

针对总结、文本生成、分类、开放式问答和信息提取等任务的生成式大语言模型;

文本嵌入(embeddings)大语言模型,能够将文本输入(字词、短语甚至是大篇幅文章)翻译成包含语义的数字表达(jiembeddings 嵌入编码)。

虽然这种大语言模型不生成文本,但对个性化推荐和搜索等应用程序却大有裨益,因为相对于匹配文字,对比编码可以帮助模型反馈更相关、更符合情境的结果。实际上,亚马逊的产品搜索能力就是采用了类似的文本嵌入模型,能够帮助客户更好地查找所需的商品。为了持续推动使用负责任AI的最佳实践,Titan 基础模型可以识别和删除客户提交给定制模型的数据中的有害内容,拒绝用户输入不当内容,过滤模型中包含不当内容的输出结果,如仇恨言论、脏话和语言暴力。

除了Amazon Titan,还有其他一些著名的大语言模型,如GPT-4、Claude 2等。这些大语言模型在自然语言处理、机器翻译、对话系统、文本生成等领域展现出了强大的能力和潜力。例如,GPT-4的回答准确性不仅大幅提高,还具备更高水平的识图能力,且能够生成歌词、创意文本,实现风格变化。此外,GPT-4的文字输入限制也提升至2.5万字,且对于英语以外的语种支持有更多优化。

大语言模型的发展前景非常广阔:

模型规模的不断增大:大语言模型的规模呈指数级增长,从最初的几百万参数到现在的数十亿、数百亿参数,模型规模的增大使得大语言模型可以更好地理解和生成人类语言。

训练数据的丰富度提升:大语言模型的性能受训练数据的影响很大,随着互联网和大数据的发展,可以收集和利用的训练数据越来越多,模型的训练数据将日趋丰富。这为大语言模型提供了更多的“学习”资源,使其能够更精准地理解和生成人类语言。

模型的多模态学习:大语言模型将越来越趋向于多模态学习,即不仅可以理解和生成文本,还可以理解和生成图像、音频和视频等不同的模态数据。多模态学习可以使得大语言模型对于各种类型的数据都有较好的处理能力,进一步增强其理解和生成人类语言的能力。

预训练大语言模型的普适性和少样本学习能力:预训练大语言模型具有强通用性和少样本学习能力,可以满足垂直行业的共性需求和典型产品的技术要求。这使得大语言模型在各个领域的应用更加广泛,也为其在特定领域的发展提供了可能性。

大语言模型提高了模型使用效率:业内普遍认为“一次开发,终身使用”。拥有更通识的大语言模型将为细分任务奠定基础,后续应用无需投入大量标注数据及从头训练调参,效率明显提升。这使得大语言模型的训练和应用更加便捷高效。

大语言模型承上启下,深刻影响底层技术和上层应用的发展:向下驱动数据技术和计算架构能力的提升,支撑大语言模型训练、部署和优化,向上支撑上层应用的服务转型。这表明大语言模型不仅在底层技术上有所突破,同时也对上层应用的发展产生深远影响。

未来发展路径:虽然无法预测大语言模型的未来发展路径,但可以肯定的是,随着技术的不断进步和应用场景的不断扩展,大语言模型将会在更多领域得到应用和发展。同时,我们也需要关注大语言模型可能带来的伦理和社会问题,如数据隐私、信息泄露、歧视和偏见等,以确保其在发展过程中能够更好地为人类社会服务。

总之,大语言模型是人工智能领域中的一种重要技术,它可以生成具有高度流畅和连贯性的自然语言文本,并能够完成对话和问答等任务。这种模型可以用于各种自然语言处理任务,如文本生成、机器翻译和自然语言理解等。

这篇关于大语言模型:以Amazon Titan等大语言模型为例介绍的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/429364

相关文章

MybatisPlus service接口功能介绍

《MybatisPlusservice接口功能介绍》:本文主要介绍MybatisPlusservice接口功能介绍,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友... 目录Service接口基本用法进阶用法总结:Lambda方法Service接口基本用法MyBATisP

Go语言中泄漏缓冲区的问题解决

《Go语言中泄漏缓冲区的问题解决》缓冲区是一种常见的数据结构,常被用于在不同的并发单元之间传递数据,然而,若缓冲区使用不当,就可能引发泄漏缓冲区问题,本文就来介绍一下问题的解决,感兴趣的可以了解一下... 目录引言泄漏缓冲区的基本概念代码示例:泄漏缓冲区的产生项目场景:Web 服务器中的请求缓冲场景描述代码

Go语言如何判断两张图片的相似度

《Go语言如何判断两张图片的相似度》这篇文章主要为大家详细介绍了Go语言如何中实现判断两张图片的相似度的两种方法,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 在介绍技术细节前,我们先来看看图片对比在哪些场景下可以用得到:图片去重:自动删除重复图片,为存储空间"瘦身"。想象你是一个

Go语言中Recover机制的使用

《Go语言中Recover机制的使用》Go语言的recover机制通过defer函数捕获panic,实现异常恢复与程序稳定性,具有一定的参考价值,感兴趣的可以了解一下... 目录引言Recover 的基本概念基本代码示例简单的 Recover 示例嵌套函数中的 Recover项目场景中的应用Web 服务器中

MySQL复杂SQL之多表联查/子查询详细介绍(最新整理)

《MySQL复杂SQL之多表联查/子查询详细介绍(最新整理)》掌握多表联查(INNERJOIN,LEFTJOIN,RIGHTJOIN,FULLJOIN)和子查询(标量、列、行、表子查询、相关/非相关、... 目录第一部分:多表联查 (JOIN Operations)1. 连接的类型 (JOIN Types)

java中BigDecimal里面的subtract函数介绍及实现方法

《java中BigDecimal里面的subtract函数介绍及实现方法》在Java中实现减法操作需要根据数据类型选择不同方法,主要分为数值型减法和字符串减法两种场景,本文给大家介绍java中BigD... 目录Java中BigDecimal里面的subtract函数的意思?一、数值型减法(高精度计算)1.

Pytorch介绍与安装过程

《Pytorch介绍与安装过程》PyTorch因其直观的设计、卓越的灵活性以及强大的动态计算图功能,迅速在学术界和工业界获得了广泛认可,成为当前深度学习研究和开发的主流工具之一,本文给大家介绍Pyto... 目录1、Pytorch介绍1.1、核心理念1.2、核心组件与功能1.3、适用场景与优势总结1.4、优

详解如何使用Python从零开始构建文本统计模型

《详解如何使用Python从零开始构建文本统计模型》在自然语言处理领域,词汇表构建是文本预处理的关键环节,本文通过Python代码实践,演示如何从原始文本中提取多尺度特征,并通过动态调整机制构建更精确... 目录一、项目背景与核心思想二、核心代码解析1. 数据加载与预处理2. 多尺度字符统计3. 统计结果可

Java实现本地缓存的常用方案介绍

《Java实现本地缓存的常用方案介绍》本地缓存的代表技术主要有HashMap,GuavaCache,Caffeine和Encahche,这篇文章主要来和大家聊聊java利用这些技术分别实现本地缓存的方... 目录本地缓存实现方式HashMapConcurrentHashMapGuava CacheCaffe

SpringBoot整合Sa-Token实现RBAC权限模型的过程解析

《SpringBoot整合Sa-Token实现RBAC权限模型的过程解析》:本文主要介绍SpringBoot整合Sa-Token实现RBAC权限模型的过程解析,本文给大家介绍的非常详细,对大家的学... 目录前言一、基础概念1.1 RBAC模型核心概念1.2 Sa-Token核心功能1.3 环境准备二、表结