软著项目推荐 深度学习 植物识别算法系统

2023-11-27 17:52

本文主要是介绍软著项目推荐 深度学习 植物识别算法系统,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • 0 前言
  • 2 相关技术
    • 2.1 VGG-Net模型
    • 2.2 VGG-Net在植物识别的优势
      • (1) 卷积核,池化核大小固定
      • (2) 特征提取更全面
      • (3) 网络训练误差收敛速度较快
  • 3 VGG-Net的搭建
    • 3.1 Tornado简介
      • (1) 优势
      • (2) 关键代码
  • 4 Inception V3 神经网络
    • 4.1 网络结构
  • 5 开始训练
    • 5.1 数据集
    • 5.2 关键代码
    • 5.3 模型预测
  • 6 效果展示
    • 6.1 主页面展示
    • 6.2 图片预测
    • 6.3 三维模型可视化
  • 7 最后

0 前言

🔥 优质竞赛项目系列,今天要分享的是

🚩 基于深度学习的植物识别算法研究与实现

该项目较为新颖,适合作为竞赛课题方向,学长非常推荐!

在这里插入图片描述

🥇学长这里给一个题目综合评分(每项满分5分)

  • 难度系数:4分
  • 工作量:4分
  • 创新点:3分

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate


2 相关技术

2.1 VGG-Net模型

Google DeepMind公司研究员与牛津大学计算机视觉组在2014年共同研发出了一种全新的卷积神经网络–VGG-
Net。在同年举办的ILSVRC比赛中,该网络结构模型在分类项目中取得了十分出色的成绩,由于其简洁性和实用性,使得其在当时迅速,飞快地成为了最受欢迎的卷积神经网络模型。VGG-
Net卷积神经网络在近年来衍生出了A-
E七种不同的层次结构,本次研究使用其中的D结构,也就是VGG-16Net结构,该结构中包含了13个卷积层,5个池化层和3个全连接层。针对所有的卷积层,使用相同的5x5大小的卷积核,针对所有的池化层,使用相同的3x3大小的池化核。VGG-
Net结构如图所示。

在这里插入图片描述

2.2 VGG-Net在植物识别的优势

在针对植物识别问题上,VGG-Net有着一些相较于其他神经网络的优势,主要包括以下几点:

(1) 卷积核,池化核大小固定

网络中所有的卷积核大小固定为3x3,所有的池化核大小固定为5x5。这样在进行卷积和池化操作的时候,从数据中提取到的特征更加明显,同时在层与层的连接时,信息的丢失会更少,更加方便后续对于重要特征的提取和处理。

(2) 特征提取更全面

VGG-
Net网络模型中包含了13个卷积层。卷积层数目越多,对于特征的提取更加的全面。由于需要对于植物的姿态、颜色等进行判定,植物的特征较多,需要在提取时更加的全面,细致,才有可能得到一个更加准确的判定。VGG-
Net符合条件。

在这里插入图片描述

(3) 网络训练误差收敛速度较快

VGG-
Net网络在训练时收敛速度相对较快,能够较快地得到预期的结果。具有这一特点的原因有两个,一个是网络中每一个卷积层和池化层中的卷积核大小与池化核大小固定,另一个就是对于各个隐藏层的参数初始化方法使用专门针对ReLU激活函数的Kaiming正态初始化方法。

3 VGG-Net的搭建

本次研究基于Pytorch深度学习框架进行网络的搭建,利用模块化的设计思想,构建一个类,来对于整个的网络进行结构上的封装。这样搭建的好处是可以隐藏实现的内部细节,提高代码的安全性,增强代码的复用效率,并且对于一些方法,通过在内部集成,可以方便之后对于其中方法的调用,提升代码的简洁性。
在网络搭建完成后,将数据集传入网络中进行训练,经过一段时间后即可得到植物识别的分类识别结果。

3.1 Tornado简介

Tornado全称Tornado Web
Server,是一个用Python语言写成的Web服务器兼Web应用框架,由FriendFeed公司在自己的网站FriendFeed中使用,被Facebook收购以后框架在2009年9月以开源软件形式开放给大众。

(1) 优势

  • 轻量级web框架
  • 异步非阻塞IO处理方式
  • 出色的抗负载能力
  • 优异的处理性能,不依赖多进程/多线程,一定程度上解决C10K问题
  • WSGI全栈替代产品,推荐同时使用其web框架和HTTP服务器

(2) 关键代码

class MainHandler(tornado.web.RequestHandler):def get(self):self.render("index.html")def post(self):keras.backend.clear_session()img = Image.open(BytesIO(self.request.files['image'][0]['body']))img = imgb_img = Image.new('RGB', (224, 224), (255, 255, 255))size = img.sizeif size[0] >= size[1]:rate = 224 / size[0]new_size = (224, int(size[1] * rate))img = img.resize(new_size, Image.ANTIALIAS).convert("RGB")b_img.paste(img, (0, random.randint(0, 224 - new_size[1])))else:rate = 224 / size[1]new_size = (int(size[0] * rate), 224)img = img.resize(new_size, Image.ANTIALIAS).convert("RGB")b_img.paste(img, (random.randint(0, 224 - new_size[0]), 0))if self.get_argument("method", "mymodel") == "VGG16":Model = load_model("VGG16.h5")else:Model = load_model("InceptionV3.h5")data = orc_img(Model,b_img)self.write(json.dumps({"code": 200, "data": data}))def make_app():template_path = "templates/"static_path = "./static/"return tornado.web.Application([(r"/", MainHandler),], template_path=template_path, static_path=static_path, debug=True)def run_server(port=8000):tornado.options.parse_command_line()app = make_app()app.listen(port)print("\n服务已启动 请打开 http://127.0.0.1:8000 ")tornado.ioloop.IOLoop.current().start()

4 Inception V3 神经网络

GoogLeNet对网络中的传统卷积层进行了修改,提出了被称为 Inception
的结构,用于增加网络深度和宽度,提高深度神经网络性能。从Inception V1到Inception
V4有4个更新版本,每一版的网络在原来的基础上进行改进,提高网络性能。

4.1 网络结构

在这里插入图片描述

inception结构的作用(inception的结构和作用)

作用:代替人工确定卷积层中过滤器的类型或者确定是否需要创建卷积层或者池化层。即:不需要人为决定使用什么过滤器,是否需要创建池化层,由网络自己学习决定这些参数,可以给网络添加所有可能值,将输入连接起来,网络自己学习需要它需要什么样的参数。

inception主要思想

用密集成分来近似最优的局部稀疏解(如上图)

  • 采用不同大小的卷积核意味着有不同大小的感受野,最后的拼接意味着不同尺度特征的融合。
  • 之所以卷积核大小采用1x1、3x3和5x5,主要是为了方便对齐。设定卷积步长stride=1之后,只要分别设定padding = 0、1、2,采用same卷积可以得到相同维度的特征,然后这些特征直接拼接在一起。
  • 很多地方都表明pooling挺有效,所以Inception里面也嵌入了pooling。
  • 网络越到后面特征越抽象,且每个特征涉及的感受野也更大,随着层数的增加,3x3和5x5卷积的比例也要增加。
  • 最终版inception,加入了1x1 conv来降低feature map厚度。

5 开始训练

5.1 数据集

训练图像按照如下方式进行分类,共分为9文件夹。

在这里插入图片描述

5.2 关键代码

    from keras.utils import Sequenceimport mathclass SequenceData(Sequence):def __init__(self, batch_size, target_size, data):# 初始化所需的参数self.batch_size = batch_sizeself.target_size = target_sizeself.x_filenames = datadef __len__(self):# 让代码知道这个序列的长度num_imgs = len(self.x_filenames)return math.ceil(num_imgs / self.batch_size)def __getitem__(self, idx):# 迭代器部分batch_x = self.x_filenames[idx * self.batch_size: (idx + 1) * self.batch_size]imgs = []y = []for x in batch_x:img = Image.open(x)b_img = Image.new('RGB', self.target_size, (255, 255, 255))size = img.sizeif size[0] >= size[1]:rate = self.target_size[0] / size[0]new_size = (self.target_size[0], int(size[1] * rate))img = img.resize(new_size, Image.ANTIALIAS).convert("RGB")b_img.paste(img, (0, random.randint(0, self.target_size[0] - new_size[1])))else:rate = self.target_size[0] / size[1]new_size = (int(size[0] * rate), self.target_size[0])img = img.resize(new_size, Image.ANTIALIAS).convert("RGB")b_img.paste(img, (random.randint(0, self.target_size[0] - new_size[0]), 0))img = b_imgif random.random() < 0.1:img = img.convert("L").convert("RGB")if random.random() < 0.2:img = img.rotate(random.randint(0, 20))  # 随机旋转一定角度if random.random() < 0.2:img = img.rotate(random.randint(340, 360))  # 随 旋转一定角度imgs.append(img.convert("RGB"))x_arrays = 1 - np.array([np.array(i)  for i in imgs]).astype(float) / 255  # 读取一批图片batch_y = to_categorical(np.array([labels.index(x.split("/")[-2]) for x in batch_x]), len(labels))return x_arrays, batch_y

5.3 模型预测

利用我们训练好的 vgg16.h5 模型进行预测,相关代码如下:

def orc_img(model,image):img =np.array(image)img = np.array([1 - img.astype(float) / 255])predict = model.predict(img)index = predict.argmax()print("CNN预测", index)target = target_name[index]index2 = np.argsort(predict)[0][-2]target2 = target_name[index2]index3 = np.argsort(predict)[0][-3]target3 = target_name[index3]return {"target": target,"predict": "%.2f" % (float(list(predict)[0][index]) * 64),"target2": target2,"predict2": "%.2f" % (float(list(predict)[0][index2]) * 64),}

6 效果展示

6.1 主页面展示

在这里插入图片描述

6.2 图片预测

在这里插入图片描述

6.3 三维模型可视化

学长在web页面上做了一个三维网络结构可视化功能,可以直观的看到网络模型结构

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

7 最后

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

这篇关于软著项目推荐 深度学习 植物识别算法系统的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/428224

相关文章

一文详解如何在idea中快速搭建一个Spring Boot项目

《一文详解如何在idea中快速搭建一个SpringBoot项目》IntelliJIDEA作为Java开发者的‌首选IDE‌,深度集成SpringBoot支持,可一键生成项目骨架、智能配置依赖,这篇文... 目录前言1、创建项目名称2、勾选需要的依赖3、在setting中检查maven4、编写数据源5、开启热

SpringBoot项目配置logback-spring.xml屏蔽特定路径的日志

《SpringBoot项目配置logback-spring.xml屏蔽特定路径的日志》在SpringBoot项目中,使用logback-spring.xml配置屏蔽特定路径的日志有两种常用方式,文中的... 目录方案一:基础配置(直接关闭目标路径日志)方案二:结合 Spring Profile 按环境屏蔽关

Python基于微信OCR引擎实现高效图片文字识别

《Python基于微信OCR引擎实现高效图片文字识别》这篇文章主要为大家详细介绍了一款基于微信OCR引擎的图片文字识别桌面应用开发全过程,可以实现从图片拖拽识别到文字提取,感兴趣的小伙伴可以跟随小编一... 目录一、项目概述1.1 开发背景1.2 技术选型1.3 核心优势二、功能详解2.1 核心功能模块2.

Java SWT库详解与安装指南(最新推荐)

《JavaSWT库详解与安装指南(最新推荐)》:本文主要介绍JavaSWT库详解与安装指南,在本章中,我们介绍了如何下载、安装SWTJAR包,并详述了在Eclipse以及命令行环境中配置Java... 目录1. Java SWT类库概述2. SWT与AWT和Swing的区别2.1 历史背景与设计理念2.1.

基于Python实现一个简单的题库与在线考试系统

《基于Python实现一个简单的题库与在线考试系统》在当今信息化教育时代,在线学习与考试系统已成为教育技术领域的重要组成部分,本文就来介绍一下如何使用Python和PyQt5框架开发一个名为白泽题库系... 目录概述功能特点界面展示系统架构设计类结构图Excel题库填写格式模板题库题目填写格式表核心数据结构

Go学习记录之runtime包深入解析

《Go学习记录之runtime包深入解析》Go语言runtime包管理运行时环境,涵盖goroutine调度、内存分配、垃圾回收、类型信息等核心功能,:本文主要介绍Go学习记录之runtime包的... 目录前言:一、runtime包内容学习1、作用:① Goroutine和并发控制:② 垃圾回收:③ 栈和

Java日期类详解(最新推荐)

《Java日期类详解(最新推荐)》早期版本主要使用java.util.Date、java.util.Calendar等类,Java8及以后引入了新的日期和时间API(JSR310),包含在ja... 目录旧的日期时间API新的日期时间 API(Java 8+)获取时间戳时间计算与其他日期时间类型的转换Dur

Linux系统中的firewall-offline-cmd详解(收藏版)

《Linux系统中的firewall-offline-cmd详解(收藏版)》firewall-offline-cmd是firewalld的一个命令行工具,专门设计用于在没有运行firewalld服务的... 目录主要用途基本语法选项1. 状态管理2. 区域管理3. 服务管理4. 端口管理5. ICMP 阻断

MySQL版本问题导致项目无法启动问题的解决方案

《MySQL版本问题导致项目无法启动问题的解决方案》本文记录了一次因MySQL版本不一致导致项目启动失败的经历,详细解析了连接错误的原因,并提供了两种解决方案:调整连接字符串禁用SSL或统一MySQL... 目录本地项目启动报错报错原因:解决方案第一个:第二种:容器启动mysql的坑两种修改时区的方法:本地

springboot项目中使用JOSN解析库的方法

《springboot项目中使用JOSN解析库的方法》JSON,全程是JavaScriptObjectNotation,是一种轻量级的数据交换格式,本文给大家介绍springboot项目中使用JOSN... 目录一、jsON解析简介二、Spring Boot项目中使用JSON解析1、pom.XML文件引入依