38万条数据,用python分析保险产品交叉销售相关因素!

本文主要是介绍38万条数据,用python分析保险产品交叉销售相关因素!,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

CDA数据分析师 出品  

作者:真达、Mika

数据:真达  

【导读】今天的内容是一期Python实战训练,我们来手把手教你用Python分析保险产品交叉销售和哪些因素有关。

01、实战背景

首先介绍下实战的背景, 这次的数据集来自kaggle:

https://www.kaggle.com/anmolkumar/health-insurance-cross-sell-prediction

我们的客户是一家保险公司,最近新推出了一款汽车保险。现在他们的需要是建立一个模型,用来预测去年的投保人是否会对这款汽车保险感兴趣。

我们知道,保险单指的是,保险公司承诺为特定类型的损失、损害、疾病或死亡提供赔偿保证,客户则需要定期向保险公司支付一定的保险费。这里再进一步说明一下。

例如,你每年要为20万的健康保险支付2000元的保险费。那么你肯定会想,保险公司只收取5000元的保费,这种情况下,怎么能承担如此高的住院费用呢? 这时,“概率”的概念就出现了。例如,像你一样,可能有100名客户每年支付2000元的保费,但当年住院的可能只有少数人,(比如2-3人),而不是所有人。通过这种方式,每个人都分担了其他人的风险。

和医疗保险一样,买了车险的话,每年都需要向保险公司支付一定数额的保险费,这样在车辆发生意外事故时,保险公司将向客户提供赔偿(称为“保险金额”)。

我们要做的就是建立模型,来预测客户是否对汽车保险感兴趣。这对保险公司来说是非常有帮助的,公司可以据此制定沟通策略,接触这些客户,并优化其商业模式和收入。

02、数据理解

为了预测客户是否对车辆保险感兴趣,我们需要了解一些客户信息 (性别、年龄等)、车辆(车龄、损坏情况)、保单(保费、采购渠道)等信息。

数据划分为训练集和测试集,训练数据包含381109笔客户资料,每笔客户资料包含12个字段,1个客户ID字段、10个输入字段及1个目标字段-Response是否响应(1代表感兴趣,0代表不感兴趣)。测试数据包含127037笔客户资料;字段个数与训练数据相同,目标字段没有值。字段的定义可参考下文。

下面我们开始吧!

03、数据读入和预览

首先开始数据读入和预览。

# 数据整理
import numpy as np 
import pandas as pd # 可视化
import matplotlib.pyplot as plt 
import seaborn as sns 
import plotly as py 
import plotly.graph_objs as go 
import plotly.express as px 
pyplot = py.offline.plot 
from exploratory_data_analysis import EDAnalysis # 自定义
# 读入训练集
train = pd.read_csv('../data/train.csv')
train.head() 

# 读入测试集
test = pd.read_csv('../data/test.csv')
test.head() 

print(train.info())
print('-' * 50)
print(test.info()) 
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 381109 entries, 0 to 381108
Data columns (total 12 columns):#   Column                Non-Null Count   Dtype  
---  ------                --------------   -----  0   id                    381109 non-null  int64  1   Gender                381109 non-null  object 2   Age                   381109 non-null  int64  3   Driving_License       381109 non-null  int64  4   Region_Code           381109 non-null  float645   Previously_Insured    381109 non-null  int64  6   Vehicle_Age           381109 non-null  object 7   Vehicle_Damage        381109 non-null  object 8   Annual_Premium        381109 non-null  float649   Policy_Sales_Channel  381109 non-null  float6410  Vintage               381109 non-null  int64  11  Response              381109 non-null  int64  
dtypes: float64(3), int64(6), object(3)
memory usage: 34.9+ MB
None
--------------------------------------------------
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 127037 entries, 0 to 127036
Data columns (total 11 columns):#   Column                Non-Null Count   Dtype  
---  ------                --------------   -----  0   id                    127037 non-null  int64  1   Gender                127037 non-null  object 2   Age                   127037 non-null  int64  3   Driving_License       127037 non-null  int64  4   Region_Code           127037 non-null  float645   Previously_Insured    127037 non-null  int64  6   Vehicle_Age           127037 non-null  object 7   Vehicle_Damage        127037 non-null  object 8   Annual_Premium        127037 non-null  float649   Policy_Sales_Channel  127037 non-null  float6410  Vintage               127037 non-null  int64  
dtypes: float64(3), int64(5), object(3)
memory usage: 10.7+ MB
None

04、探索性分析

下面,我们基于训练数据集进行探索性数据分析。

1. 描述性分析

首先对数据集中数值型属性进行描述性统计分析。

desc_table = train.drop(['id', 'Vehicle_Age'], axis=1).describe().T
desc_table

 通过描述性分析后,可以得到以下结论。从以上描述性分析结果可以得出:

  • 客户年龄:客户的年龄范围在20 ~ 85岁之间,平均年龄是38岁,青年群体居多;
  • 是否有驾照:99.89%客户都持有驾照;
  • 之前是否投保:45.82%的客户已经购买了车辆保险;
  • 年度保费:客户的保费范围在2630 ~ 540165之间,平均的保费金额是30564。
  • 往来时长:此数据基于过去一年的数据,客户的往来时间范围在10~299天之间,平均往来时长为154天。
  • 是否响应:平均来看,客户对车辆保险感兴趣的概率为12.25%。

2. 目标变量的分布

训练集共有381109笔客户资料,其中感兴趣的有46710人,占比12.3%,不感兴趣的有334399人,占比87.7%。

train['Response'].value_counts() 
0    334399
1     46710
Name: Response, dtype: int64
values = train['Response'].value_counts().values.tolist()# 轨迹
trace1 = go.Pie(labels=['Not interested', 'Interested'], values=values,hole=.5,marker={'line': {'color': 'white', 'width': 1.3}})
# 轨迹列表
data = [trace1] 
# 布局
layout = go.Layout(title=f'Distribution_ratio of Response', height=600)
# 画布
fig = go.Figure(data=data, layout=layout)
# 生成HTML
pyplot(fig, filename='./html/目标变量分布.html') 

3. 性别因素

从条形图可以看出,男性的客户群体对汽车保险感兴趣的概率稍高,是13.84%,相较女性客户高出3个百分点。

pd.crosstab(train['Gender'], train['Response'])  

# 实例类
eda = EDAnalysis(data=train, id_col='id', target='Response')# 柱形图
fig = eda.draw_bar_stack_cat(colname='Gender')
pyplot(fig, filename='./html/性别与是否感兴趣.html') 

4. 之前是否投保

没有购买汽车保险的客户响应概率更高,为22.54%,有购买汽车保险的客户则没有这一需求,感兴趣的概率仅为0.09%。

pd.crosstab(train['Previously_Insured'], train['Response'])  

fig = eda.draw_bar_stack_cat(colname='Previously_Insured')
pyplot(fig, filename='./html/之前是否投保与是否感兴趣.html')  

5. 车龄因素

车龄越大,响应概率越高,大于两年的车龄感兴趣的概率最高,为29.37%,其次是1~2年车龄,概率为17.38%。小于1年的仅为4.37%。

6. 车辆损坏情况

车辆曾经损坏过的客户有较高的响应概率,为23.76%,相比之下,客户过去车辆没有损坏的响应概率仅为0.52%

7. 不同年龄

从直方图中可以看出,年龄较高的群体和较低的群体响应的概率较低,30~60岁之前的客户响应概率较高。通过可视化探索,我们大致可以知道:

车龄在1年以上,之前有车辆损坏的情况出现,且未购买过车辆保险的客户有较高的响应概率。

05、数据预处理

此部分工作主要包含字段选择,数据清洗和数据编码,字段的处理如下:

  • Region_Code和Policy_Sales_Channel:分类数过多,且不易解读,删除;
  • Annual_Premium:异常值处理
  • Gender、Vehicle_Age、Vehicle_Damage:分类型数据转换为数值型编码
# 删除字段
train = train.drop(['Region_Code', 'Policy_Sales_Channel'], axis=1) # 盖帽法处理异常值
f_max = train['Annual_Premium'].mean() + 3*train['Annual_Premium'].std()
f_min = train['Annual_Premium'].mean() - 3*train['Annual_Premium'].std() train.loc[train['Annual_Premium'] > f_max, 'Annual_Premium'] = f_max
train.loc[train['Annual_Premium'] < f_min, 'Annual_Premium'] = f_min # 数据编码
train['Gender'] = train['Gender'].map({'Male': 1, 'Female': 0}) 
train['Vehicle_Damage'] = train['Vehicle_Damage'].map({'Yes': 1, 'No': 0}) 
train['Vehicle_Age'] = train['Vehicle_Age'].map({'< 1 Year': 0, '1-2 Year': 1, '> 2 Years': 2}) 
train.head() 

测试集做相同的处理:

# 删除字段
test = test.drop(['Region_Code', 'Policy_Sales_Channel'], axis=1)  
# 盖帽法处理
test.loc[test['Annual_Premium'] > f_max, 'Annual_Premium'] = f_max
test.loc[test['Annual_Premium'] < f_min, 'Annual_Premium'] = f_min # 数据编码
test['Gender'] = test['Gender'].map({'Male': 1, 'Female': 0}) 
test['Vehicle_Damage'] = test['Vehicle_Damage'].map({'Yes': 1, 'No': 0}) 
test['Vehicle_Age'] = test['Vehicle_Age'].map({'< 1 Year': 0, '1-2 Year': 1, '> 2 Years': 2}) 
test.head() 

06、数据建模

我们选择使用以下几种模型进行建置,并比较模型的分类效能。首先在将训练集划分为训练集和验证集,其中训练集用于训练模型,验证集用于验证模型效果。首先导入建模库:

# 建模
from sklearn.linear_model import LogisticRegression
from sklearn.neighbors import KNeighborsClassifier
from sklearn.tree import DecisionTreeClassifier
from sklearn.ensemble import RandomForestClassifier
from lightgbm import LGBMClassifier# 预处理
from sklearn.preprocessing import StandardScaler, MinMaxScaler# 模型评估
from sklearn.model_selection import train_test_split, GridSearchCV
from sklearn.metrics import confusion_matrix, classification_report, accuracy_score, f1_score, roc_auc_score
# 划分特征和标签
X = train.drop(['id', 'Response'], axis=1)
y = train['Response'] # 划分训练集和验证集(分层抽样) 
X_train, X_val, y_train, y_val = train_test_split(X, y, test_size=0.2, stratify=y, random_state=0) 
print(X_train.shape, X_val.shape, y_train.shape, y_val.shape) 
(304887, 8) (76222, 8) (304887,) (76222,)
# 处理样本不平衡,对0类样本进行降采样
from imblearn.under_sampling import RandomUnderSamplerunder_model = RandomUnderSampler(sampling_strategy={0:133759, 1:37368}, random_state=0)
X_train, y_train = under_model.fit_sample(X_train, y_train)  
# 保存一份极值标准化的数据
mms = MinMaxScaler()X_train_scaled = pd.DataFrame(mms.fit_transform(X_train), columns=x_under.columns)
X_val_scaled = pd.DataFrame(mms.transform(X_val), columns=x_under.columns)# 测试集
X_test = test.drop('id', axis=1) 
X_test_scaled = pd.DataFrame(mms.transform(X_test), columns=X_test.columns)  

1. KNN算法

# 建立knn
knn = KNeighborsClassifier(n_neighbors=3, n_jobs=-1)
knn.fit(X_train_scaled, y_train)y_pred = knn.predict(X_val_scaled)print('Simple KNeighborsClassifier accuracy:%.3f' % (accuracy_score(y_val, y_pred)))
print('Simple KNeighborsClassifier f1_score: %.3f' % (f1_score(y_val, y_pred)))  
print('Simple KNeighborsClassifier roc_auc_score: %.3f' % (roc_auc_score(y_val, y_pred))) 
Simple KNeighborsClassifier accuracy:0.807
Simple KNeighborsClassifier f1_score: 0.337
Simple KNeighborsClassifier roc_auc_score: 0.632
# 对测试集评估
test_y = knn.predict(X_test_scaled)
test_y[:5] 
array([0, 0, 1, 0, 0], dtype=int64)

2. Logistic回归

# Logistic回归
lr = LogisticRegression()
lr.fit(X_train_scaled, y_train)y_pred = lr.predict(X_val_scaled)print('Simple LogisticRegression accuracy:%.3f' % (accuracy_score(y_val, y_pred)))
print('Simple LogisticRegression f1_score: %.3f' % (f1_score(y_val, y_pred)))  
print('Simple LogisticRegression roc_auc_score: %.3f' % (roc_auc_score(y_val, y_pred)))
Simple LogisticRegression accuracy:0.863
Simple LogisticRegression f1_score: 0.156
Simple LogisticRegression roc_auc_score: 0.536

3. 决策树

# 决策树
dtc = DecisionTreeClassifier(max_depth=10, random_state=0) 
dtc.fit(X_train, y_train)y_pred = dtc.predict(X_val) print('Simple DecisionTreeClassifier accuracy:%.3f' % (accuracy_score(y_val, y_pred)))
print('Simple DecisionTreeClassifier f1_score: %.3f' % (f1_score(y_val, y_pred)))  
print('Simple DecisionTreeClassifier roc_auc_score: %.3f' % (roc_auc_score(y_val, y_pred))) 
Simple DecisionTreeClassifier accuracy:0.849
Simple DecisionTreeClassifier f1_score: 0.310
Simple DecisionTreeClassifier roc_auc_score: 0.603

4. 随机森林

# 决策树
rfc = RandomForestClassifier(n_estimators=100, max_depth=10, n_jobs=-1)  
rfc.fit(X_train, y_train)y_pred = rfc.predict(X_val) print('Simple RandomForestClassifier accuracy:%.3f' % (accuracy_score(y_val, y_pred)))
print('Simple RandomForestClassifier f1_score: %.3f' % (f1_score(y_val, y_pred)))  
print('Simple RandomForestClassifier roc_auc_score: %.3f' % (roc_auc_score(y_val, y_pred))) 
Simple RandomForestClassifier accuracy:0.870
Simple RandomForestClassifier f1_score: 0.177
Simple RandomForestClassifier roc_auc_score: 0.545

5. LightGBM

lgbm = LGBMClassifier(n_estimators=100, random_state=0)
lgbm.fit(X_train, y_train)y_pred = lgbm.predict(X_val)print('Simple LGBM accuracy: %.3f' % (accuracy_score(y_val, y_pred)))
print('Simple LGBM f1_score: %.3f' % (f1_score(y_val, y_pred)))  
print('Simple LGBM roc_auc_score: %.3f' % (roc_auc_score(y_val, y_pred))) 
Simple LGBM accuracy: 0.857
Simple LGBM f1_score: 0.290
Simple LGBM roc_auc_score: 0.591

综上,以f1-score作为评价标准的情况下,KNN算法有较好的分类效能,这可能是由于数据样本本身不平衡导致,后续可以通过其他类别不平衡的方式做进一步处理,同时可以通过参数调整的方式来优化其他模型,通过调整预测的门槛值来增加预测效能等其他方式。

 

这篇关于38万条数据,用python分析保险产品交叉销售相关因素!的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!


原文地址:https://blog.csdn.net/yoggieCDA/article/details/109716186
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.chinasem.cn/article/428125

相关文章

Java整合Protocol Buffers实现高效数据序列化实践

《Java整合ProtocolBuffers实现高效数据序列化实践》ProtocolBuffers是Google开发的一种语言中立、平台中立、可扩展的结构化数据序列化机制,类似于XML但更小、更快... 目录一、Protocol Buffers简介1.1 什么是Protocol Buffers1.2 Pro

Python脚本轻松实现检测麦克风功能

《Python脚本轻松实现检测麦克风功能》在进行音频处理或开发需要使用麦克风的应用程序时,确保麦克风功能正常是非常重要的,本文将介绍一个简单的Python脚本,能够帮助我们检测本地麦克风的功能,需要的... 目录轻松检测麦克风功能脚本介绍一、python环境准备二、代码解析三、使用方法四、知识扩展轻松检测麦

Python多线程应用中的卡死问题优化方案指南

《Python多线程应用中的卡死问题优化方案指南》在利用Python语言开发某查询软件时,遇到了点击搜索按钮后软件卡死的问题,本文将简单分析一下出现的原因以及对应的优化方案,希望对大家有所帮助... 目录问题描述优化方案1. 网络请求优化2. 多线程架构优化3. 全局异常处理4. 配置管理优化优化效果1.

Python中高级文本模式匹配与查找技术指南

《Python中高级文本模式匹配与查找技术指南》文本处理是编程世界的永恒主题,而模式匹配则是文本处理的基石,本文将深度剖析PythonCookbook中的核心匹配技术,并结合实际工程案例展示其应用,希... 目录引言一、基础工具:字符串方法与序列匹配二、正则表达式:模式匹配的瑞士军刀2.1 re模块核心AP

Python Flask实现定时任务的不同方法详解

《PythonFlask实现定时任务的不同方法详解》在Flask中实现定时任务,最常用的方法是使用APScheduler库,本文将提供一个完整的解决方案,有需要的小伙伴可以跟随小编一起学习一下... 目录完js整实现方案代码解释1. 依赖安装2. 核心组件3. 任务类型4. 任务管理5. 持久化存储生产环境

Python使用python-pptx自动化操作和生成PPT

《Python使用python-pptx自动化操作和生成PPT》这篇文章主要为大家详细介绍了如何使用python-pptx库实现PPT自动化,并提供实用的代码示例和应用场景,感兴趣的小伙伴可以跟随小编... 目录使用python-pptx操作PPT文档安装python-pptx基础概念创建新的PPT文档查看

Python批量替换多个Word文档的多个关键字的方法

《Python批量替换多个Word文档的多个关键字的方法》有时,我们手头上有多个Excel或者Word文件,但是领导突然要求对某几个术语进行批量的修改,你是不是有要崩溃的感觉,所以本文给大家介绍了Py... 目录工具准备先梳理一下思路神奇代码来啦!代码详解激动人心的测试结语嘿,各位小伙伴们,大家好!有没有想

Python 字符串裁切与提取全面且实用的解决方案

《Python字符串裁切与提取全面且实用的解决方案》本文梳理了Python字符串处理方法,涵盖基础切片、split/partition分割、正则匹配及结构化数据解析(如BeautifulSoup、j... 目录python 字符串裁切与提取的完整指南 基础切片方法1. 使用切片操作符[start:end]2

Python库 Django 的简介、安装、用法入门教程

《Python库Django的简介、安装、用法入门教程》Django是Python最流行的Web框架之一,它帮助开发者快速、高效地构建功能强大的Web应用程序,接下来我们将从简介、安装到用法详解,... 目录一、Django 简介 二、Django 的安装教程 1. 创建虚拟环境2. 安装Django三、创

基于Python编写自动化邮件发送程序(进阶版)

《基于Python编写自动化邮件发送程序(进阶版)》在数字化时代,自动化邮件发送功能已成为企业和个人提升工作效率的重要工具,本文将使用Python编写一个简单的自动化邮件发送程序,希望对大家有所帮助... 目录理解SMTP协议基础配置开发环境构建邮件发送函数核心逻辑实现完整发送流程添加附件支持功能实现htm