从零开始学习FFT(快速傅里叶变换) 这也是我学习dft算法的心得,谢谢各位

本文主要是介绍从零开始学习FFT(快速傅里叶变换) 这也是我学习dft算法的心得,谢谢各位,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

 本文是从最基础的知识开始讲解,力求用最通俗易懂的文字将问题将的通俗易懂,大神勿喷,多多指教啊,虽然说是从零学习FFT,但是基本的数学知识还是要有的,sincos,等。

       FFT(快速傅里叶变换)其本质就是DFT,只不过可以快速的计算出DFT结果,要弄懂FFT,必须先弄懂DFTDFT(DiscreteFourier Transform) 离散傅里叶变换的缩写,咱们先来详细讨论DFT,因为DFT懂了之后,FFT就容易的多了

DFT(FFT)的作用:可以将信号从时域变换到频域,而且时域和频域都是离散的,通俗的说,可以求出一个信号由哪些正弦波叠加而成,求出的结果就是这些正弦波的幅度和相位,我们音乐播放器上面显示的就是音乐fft之后不同频率正弦波的幅度,就像下面这张图片:

里面的柱状高度就是正弦波的幅度

     那么为什么可以求出正弦波的幅度呢,这里就要说一下信号的相关性了,我们也可以利用信号的相关性检测信号波中是否含有某个频率的信号波:把一个待检测信号波乘以另一个信号波,个新的信号波,再把这个新的信号波所有的点进行相加,从相加的结果就可以判断出这两个信号的相似程度,比如下图:

 

        上图中a,b图是待检测信号,cd3个周期的正弦信号,很显然a图含有正弦波,e=a*c,将e图的各点相加,很显然值是正的,这就说明a图含频率为3的正弦波,f=b*d,显然将f图中各点相加结果约等于0了,说明b图不含有周期为3的正弦波,这就是dft的原理,也就是离散傅里叶变换的原理,其实就是这么简单,只不过dft将待检测信号和很多不同频率的正弦波和余弦波相乘,也就是进行了信号相关性检测,从而可以计算出信号中含有的正弦波的幅度,若含有此频率的正弦波,那么幅值不为0,若不含有此正弦波,那么幅值为0,那么幅值是如何计算出来的呢,幅值就是上面e图和f图各点之和(若是连续信号的话就是两信号乘积求积分了,。。额,不说积分,抽象了)

下面来看个具体的例子:


上面图一即为待检测信号,也就是将进行DFT变换的信号,将它分成16个离散的点,图2是一个频率为1的正弦波,也分成16个点,将对应的点相乘,得到图3,再将图3的各个点的幅值相加,结果为10.06,也就是说图1中的图像含有图2的正弦波,此时用到的dft点数就为16,10/(N/2)=10/8=1.25,含有的频率为1的正弦波的幅度就是1.25,以此类推,若要求是否含有频率为2的正弦波,将图1和频率为2的正弦波相乘再求和,。。。。

至于为什么要除以N/2,数字信号处理里面有讲,我就不多说了

     接下来就是dft的实现了:                   

    DFT的公式:

   

   其中X(k)表示DFT变换后的数据,x(n)为采样的模拟信号,公式中的x(n)可以为复信号,实际当中x(n)都是实信号,即虚部为0,此时公式可以展开为:

     从这个公式可以看出,变换后的数据就是原信号对cos和sin的相关操作,即进行相乘求和(连续信号即为积分),为什么我要将n\N写在2k*pi后面呢?因为我觉得在对cos和sin进行相关操作时,k代表和频率为多少的正弦相关,而n和N则是在一个正弦周期内采样N个点,采样间隔为2*pi\N,,n用来步进,一次步进2*pi\N,最后进行累加求和,就得出了X(k),《实用数字信号处理》这本书的DFT章节详细的解释了此公式,并且还进行了举例,看了以后明白了不少,另外,DFT之后的数据是对称的,具体原因还是在那本书上面有,在FFT的章节。比如做8DFT,采样信号为x(n),DFT之后的数据为X(k),那么X(0)为直流信号,X(1), X(2), X(3), X(5), X(6), X(7),关于X(4)对称,X(1)=X(7), X(2)=X(6),X(3)=X(5),如下图,是对1+sin(2*PI)进行DFT变换,具体的幅值先不关心,只要知道它是对称的就行了。

接下来就是对公式写程序了,先将公式展开:

在计算机中可以这样展开:

里面有个j,不用管它,我们用两个数组,一个保存sin相关,一个保存cos相关,由于cos为实部,sin为虚部,可以定义以下两个数组:

float real[N];//用来保存cos相关。

float imag[N];//用来保存sin相关。

可以得到如下程序:

[cpp]  view plain copy
  1. for(k=0;k<N;k++)  
  2. {  
  3.   for(n=0;n<N;n++)  
  4.   {  
  5.     real[k] = real[k] + x[n] * cos(2*PI*k*n/N) ;  
  6.     imag[k] = imag[k] – x[n] * sin(2*PI*k*n/N);  
  7.   }  
  8. }  

Real就是cos相关的幅值,imag就是sin相关的幅值

最后将sincos合成一个sin

就完了。。。

这篇关于从零开始学习FFT(快速傅里叶变换) 这也是我学习dft算法的心得,谢谢各位的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!


原文地址:
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.chinasem.cn/article/427226

相关文章

Go学习记录之runtime包深入解析

《Go学习记录之runtime包深入解析》Go语言runtime包管理运行时环境,涵盖goroutine调度、内存分配、垃圾回收、类型信息等核心功能,:本文主要介绍Go学习记录之runtime包的... 目录前言:一、runtime包内容学习1、作用:① Goroutine和并发控制:② 垃圾回收:③ 栈和

Android学习总结之Java和kotlin区别超详细分析

《Android学习总结之Java和kotlin区别超详细分析》Java和Kotlin都是用于Android开发的编程语言,它们各自具有独特的特点和优势,:本文主要介绍Android学习总结之Ja... 目录一、空安全机制真题 1:Kotlin 如何解决 Java 的 NullPointerExceptio

详解如何使用Python从零开始构建文本统计模型

《详解如何使用Python从零开始构建文本统计模型》在自然语言处理领域,词汇表构建是文本预处理的关键环节,本文通过Python代码实践,演示如何从原始文本中提取多尺度特征,并通过动态调整机制构建更精确... 目录一、项目背景与核心思想二、核心代码解析1. 数据加载与预处理2. 多尺度字符统计3. 统计结果可

MybatisX快速生成增删改查的方法示例

《MybatisX快速生成增删改查的方法示例》MybatisX是基于IDEA的MyBatis/MyBatis-Plus开发插件,本文主要介绍了MybatisX快速生成增删改查的方法示例,文中通过示例代... 目录1 安装2 基本功能2.1 XML跳转2.2 代码生成2.2.1 生成.xml中的sql语句头2

8种快速易用的Python Matplotlib数据可视化方法汇总(附源码)

《8种快速易用的PythonMatplotlib数据可视化方法汇总(附源码)》你是否曾经面对一堆复杂的数据,却不知道如何让它们变得直观易懂?别慌,Python的Matplotlib库是你数据可视化的... 目录引言1. 折线图(Line Plot)——趋势分析2. 柱状图(Bar Chart)——对比分析3

一文教你Java如何快速构建项目骨架

《一文教你Java如何快速构建项目骨架》在Java项目开发过程中,构建项目骨架是一项繁琐但又基础重要的工作,Java领域有许多代码生成工具可以帮助我们快速完成这一任务,下面就跟随小编一起来了解下... 目录一、代码生成工具概述常用 Java 代码生成工具简介代码生成工具的优势二、使用 MyBATis Gen

使用animation.css库快速实现CSS3旋转动画效果

《使用animation.css库快速实现CSS3旋转动画效果》随着Web技术的不断发展,动画效果已经成为了网页设计中不可或缺的一部分,本文将深入探讨animation.css的工作原理,如何使用以及... 目录1. css3动画技术简介2. animation.css库介绍2.1 animation.cs

使用雪花算法产生id导致前端精度缺失问题解决方案

《使用雪花算法产生id导致前端精度缺失问题解决方案》雪花算法由Twitter提出,设计目的是生成唯一的、递增的ID,下面:本文主要介绍使用雪花算法产生id导致前端精度缺失问题的解决方案,文中通过代... 目录一、问题根源二、解决方案1. 全局配置Jackson序列化规则2. 实体类必须使用Long封装类3.

重新对Java的类加载器的学习方式

《重新对Java的类加载器的学习方式》:本文主要介绍重新对Java的类加载器的学习方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1、介绍1.1、简介1.2、符号引用和直接引用1、符号引用2、直接引用3、符号转直接的过程2、加载流程3、类加载的分类3.1、显示

SpringBoot快速搭建TCP服务端和客户端全过程

《SpringBoot快速搭建TCP服务端和客户端全过程》:本文主要介绍SpringBoot快速搭建TCP服务端和客户端全过程,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,... 目录TCPServerTCPClient总结由于工作需要,研究了SpringBoot搭建TCP通信的过程