[小白系列]通过pydot+GraphViz实现泰坦尼克号生存预测模型的决策树可视化

本文主要是介绍[小白系列]通过pydot+GraphViz实现泰坦尼克号生存预测模型的决策树可视化,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

具体GraphViz安装,请点击链接

import numpy as np
import pandas as pd
from sklearn.tree import DecisionTreeClassifier  # 从sklearn中导入决策树分类器模型
from sklearn.feature_extraction import DictVectorizer  # 特征抽取:将特征与值的映射字典组成的列表转换成向量。
from sklearn.model_selection import cross_val_score  # 导入数据交叉验证的数据方法
from sklearn import metrics  # 指明Python sklearn机器学习各种评价指标
import matplotlib.pyplot as plt
import seaborn as sns# 数据加载
train_data = pd.read_csv('./train.csv')
test_data = pd.read_csv('./test.csv')# 使用平均年龄来填充年龄中的nan值
train_data['Age'].fillna(train_data['Age'].mean(), inplace=True)
test_data['Age'].fillna(test_data['Age'].mean(),inplace=True)
# 使用票价的均值填充票价中的nan值
train_data['Fare'].fillna(train_data['Fare'].mean(), inplace=True)
test_data['Fare'].fillna(test_data['Fare'].mean(),inplace=True)
#print(train_data['Embarked'].value_counts())
# 使用登录最多的港口来填充登录港口的nan值
train_data['Embarked'].fillna('S', inplace=True)
test_data['Embarked'].fillna('S',inplace=True)
# 特征选择
features = ['Pclass', 'Sex', 'Age', 'SibSp', 'Parch', 'Fare', 'Embarked']
train_features = train_data[features]# 显示特征之间的相关系数
plt.figure(figsize=(10, 10))
plt.title('Pearson Correlation between Features',y=1.05,size=15)
train_data_hot_encoded = train_features.drop('Embarked',1).join(train_features.Embarked.str.get_dummies())
train_data_hot_encoded = train_data_hot_encoded.drop('Sex',1).join(train_data_hot_encoded.Sex.str.get_dummies())
#  计算特征之间的Pearson系数,即相似度,具体可以看链接:https://blog.csdn.net/KaelCui/article/details/105235136
sns.heatmap(train_data_hot_encoded.corr(),linewidths=0.1,vmax=1.0, fmt= '.2f', square=True,linecolor='white',annot=True)
plt.show()# 使用饼图来进行Survived取值的可视化
#print(type(train_data["Survived"].value_counts()))
train_data["Survived"].value_counts().plot(kind = "pie", label='Survived')
plt.show()# 不同的Pclass,幸存人数(条形图)
sns.barplot(x = 'Pclass', y = "Survived", data = train_data);
plt.show()# 不同的Embarked,幸存人数(条形图)
sns.barplot(x = 'Embarked', y = "Survived", data = train_data);
plt.show()# 训练并显示特征向量的重要程度
def train(train_features, train_labels):# 构造CART决策树clf = DecisionTreeClassifier()# 决策树训练clf.fit(train_features, train_labels)# 显示特征向量的重要程度coeffs = clf.feature_importances_#print(coeffs)df_co = pd.DataFrame(coeffs, columns=["importance_"])# 下标设置为Feature Namedf_co.index = train_features.columns#print(df_co.index)df_co.sort_values("importance_", ascending=True, inplace=True)df_co.importance_.plot(kind="barh")plt.title("Feature Importance")plt.show()return clfclf = train(train_data_hot_encoded, train_data["Survived"])# 决策树可视化
import pydotplus  # 可以将Sklearn生成dot格式
from sklearn.externals.six import StringIO
from sklearn.tree import export_graphviz  #  #可视化所需的导入工具从sklearn.tree导入export_graphviz导入pydot导入操作系统def show_tree(clf):dot_data = StringIO()export_graphviz(clf, out_file=dot_data)graph = pydotplus.graph_from_dot_data(dot_data.getvalue())graph.write_pdf("titanic_tree.pdf")show_tree(clf)

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

这篇关于[小白系列]通过pydot+GraphViz实现泰坦尼克号生存预测模型的决策树可视化的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/426030

相关文章

Git可视化管理工具(SourceTree)使用操作大全经典

《Git可视化管理工具(SourceTree)使用操作大全经典》本文详细介绍了SourceTree作为Git可视化管理工具的常用操作,包括连接远程仓库、添加SSH密钥、克隆仓库、设置默认项目目录、代码... 目录前言:连接Gitee or github,获取代码:在SourceTree中添加SSH密钥:Cl

Python中模块graphviz使用入门

《Python中模块graphviz使用入门》graphviz是一个用于创建和操作图形的Python库,本文主要介绍了Python中模块graphviz使用入门,具有一定的参考价值,感兴趣的可以了解一... 目录1.安装2. 基本用法2.1 输出图像格式2.2 图像style设置2.3 属性2.4 子图和聚

Pandas中统计汇总可视化函数plot()的使用

《Pandas中统计汇总可视化函数plot()的使用》Pandas提供了许多强大的数据处理和分析功能,其中plot()函数就是其可视化功能的一个重要组成部分,本文主要介绍了Pandas中统计汇总可视化... 目录一、plot()函数简介二、plot()函数的基本用法三、plot()函数的参数详解四、使用pl

使用Python实现IP地址和端口状态检测与监控

《使用Python实现IP地址和端口状态检测与监控》在网络运维和服务器管理中,IP地址和端口的可用性监控是保障业务连续性的基础需求,本文将带你用Python从零打造一个高可用IP监控系统,感兴趣的小伙... 目录概述:为什么需要IP监控系统使用步骤说明1. 环境准备2. 系统部署3. 核心功能配置系统效果展

Python实现微信自动锁定工具

《Python实现微信自动锁定工具》在数字化办公时代,微信已成为职场沟通的重要工具,但临时离开时忘记锁屏可能导致敏感信息泄露,下面我们就来看看如何使用Python打造一个微信自动锁定工具吧... 目录引言:当微信隐私遇到自动化守护效果展示核心功能全景图技术亮点深度解析1. 无操作检测引擎2. 微信路径智能获

Python中pywin32 常用窗口操作的实现

《Python中pywin32常用窗口操作的实现》本文主要介绍了Python中pywin32常用窗口操作的实现,pywin32主要的作用是供Python开发者快速调用WindowsAPI的一个... 目录获取窗口句柄获取最前端窗口句柄获取指定坐标处的窗口根据窗口的完整标题匹配获取句柄根据窗口的类别匹配获取句

在 Spring Boot 中实现异常处理最佳实践

《在SpringBoot中实现异常处理最佳实践》本文介绍如何在SpringBoot中实现异常处理,涵盖核心概念、实现方法、与先前查询的集成、性能分析、常见问题和最佳实践,感兴趣的朋友一起看看吧... 目录一、Spring Boot 异常处理的背景与核心概念1.1 为什么需要异常处理?1.2 Spring B

Python位移操作和位运算的实现示例

《Python位移操作和位运算的实现示例》本文主要介绍了Python位移操作和位运算的实现示例,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一... 目录1. 位移操作1.1 左移操作 (<<)1.2 右移操作 (>>)注意事项:2. 位运算2.1

如何在 Spring Boot 中实现 FreeMarker 模板

《如何在SpringBoot中实现FreeMarker模板》FreeMarker是一种功能强大、轻量级的模板引擎,用于在Java应用中生成动态文本输出(如HTML、XML、邮件内容等),本文... 目录什么是 FreeMarker 模板?在 Spring Boot 中实现 FreeMarker 模板1. 环

Qt实现网络数据解析的方法总结

《Qt实现网络数据解析的方法总结》在Qt中解析网络数据通常涉及接收原始字节流,并将其转换为有意义的应用层数据,这篇文章为大家介绍了详细步骤和示例,感兴趣的小伙伴可以了解下... 目录1. 网络数据接收2. 缓冲区管理(处理粘包/拆包)3. 常见数据格式解析3.1 jsON解析3.2 XML解析3.3 自定义