02 RANSAC算法 及 Python 实现

2023-11-25 17:28
文章标签 python 算法 实现 02 ransac

本文主要是介绍02 RANSAC算法 及 Python 实现,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

    • 02 RANSAC算法 及 Python 实现
      • 2.1 简介
      • 2.2 算法流程
      • 2.3 RANSAC 算法实现直线拟合
      • 2.4 利用 RANSAC 算法减少 ORB 特征点误匹配

02 RANSAC算法 及 Python 实现

2.1 简介

RANSAC (Random Sample Consensus,随机抽样一致)算法的 基本假设 是样本中包含正确数据(inliers即内点,可以被模型描述的数据),也包含异常数据(outliers 即外点,偏离正常范围很远、无法适应数学模型的数据),也就是说数据集中含有噪声。

我们的目的就是找出 使内点最多的模型参数(类似最小二乘法,最小二乘法试图找到满足所有点的参数,而 RANSAC 是为了消除误匹配,尽量找到更多内点,去除外点)。

2.2 算法流程

RANSAC 是通过反复选择数据集去估计出模型参数,一直迭代到估计出认为比较好的模型。

具体的实现步骤可以分为以下几步:

(1)选择出可以估计出模型的最小数据集;(对于直线拟合来说就是两个点,对于计算单应矩阵就是 4 个点);

(2)使用这个最小数据集计算出模型参数;

(3)将所有数据带入这个模型,计算并记录“内点”的数目(在误差允许范围内的点的数目);

(4)与之前记录的最好模型的“内点”数量进行比较,若表现更好,则将此模型更新为最优模型;

(5)重复以上步骤,直至达到最大迭代次数或“内点”数量满足要求。

2.3 RANSAC 算法实现直线拟合

# @Time : 2022/11/7 20:11
# @Author : xiao cong
# @Function : RANSAC 算法实现直线拟合import numpy as np
import matplotlib.pyplot as plt
import randomITERS = 1000            # 最大迭代次数
SIZE = 50               # 样本数量
RATIO = 0.6             # 期望为内点的比例
INLIERS = SIZE * RATIO  # 内点# 生成样本数据
X = np.linspace(0, 5, SIZE)
Y = 2 * X + 5
for index in range(SIZE):sigma = np.random.uniform(-0.5, 0.5)  # 生成高斯噪声Y[index] += sigma# 绘散点图
plt.figure()
plt.scatter(X, Y)
plt.xlabel("x")
plt.ylabel("y")# 使用 RANSAC 算法估算模型
iter = 0  # 迭代次数
max_inliers = 0  # 先前最多内点数量
best_a = 0  # 最优参数
best_b = 0
error = 0.5  # 允许最小误差while iter <= ITERS and max_inliers < INLIERS:# 随机选取两个点,计算模型参数random_index = random.sample(range(0, SIZE), 2)  # 返回索引列表x1 = X[random_index[0]]y1 = Y[random_index[0]]x2 = X[random_index[1]]y2 = Y[random_index[1]]a = (y2 - y1) / (x2 - x1)  # 斜率b = y1 - a * x1  # 截距inliers = 0  # 本次内点数量# 代入模型,计算内点数量for index in range(SIZE):y_estimate = a * X[index] + bif abs(Y[index] - y_estimate) <= error:inliers += 1if inliers >= max_inliers:best_a = abest_b = bmax_inliers = inliersiter += 1# 画出拟合直线
Y_estimate = best_a * X + best_b
plt.plot(X, Y_estimate, linewidth=2.0, color="r")
text = "best_a: " + str(round(best_a, 2)) + "\nbest_b:  " + str(round(best_b, 2)) + \"\nmax_inliers: " + str(int(max_inliers))
plt.text(3, 6, text, fontdict={'size': 10, 'color': 'r'})
plt.title("RANSAC")
plt.show()

2.4 利用 RANSAC 算法减少 ORB 特征点误匹配

特征点匹配会有很多误匹配的点,所以求出基础矩阵 F \boldsymbol{F} F,用它来做更精准的匹配。这里以 ORB 为例,FAST 特征点就是 RANSAC 算法的数据样本。

对极约束,得到

p 2 T F p 1 = 0 \boldsymbol{p_2^{\mathrm{T}}}\boldsymbol{F}\boldsymbol{p_1}=0 p2TFp1=0

其中, p 1 \boldsymbol{p_1} p1 p 2 \boldsymbol{p_2} p2 为匹配点的像素坐标 。

分别为 ORB_features.png*、all_matches.png、goodmatches.png、*after_RANSAC.png.

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

#include <iostream>
#include <opencv2/features2d.hpp>
#include <opencv2/opencv.hpp>using namespace std;
using namespace cv;int main()
{// 读取图像Mat img_01 = imread("/home/cong/slambook_code/test/img_01.png");Mat img_02 = imread("/home/cong/slambook_code/test/img_02.png");// 提取 ORB 特征点vector<KeyPoint> keypoints_01, keypoints_02;         // FAST 特征点Mat descriptors_01, descriptors_02;                  // BRIEF 描述子Ptr<FeatureDetector> detector = ORB::create();       // 初始化Ptr<DescriptorExtractor> descriptor = ORB::create();Ptr<DescriptorMatcher> matcher = DescriptorMatcher::create("BruteForce-Hamming");//-- 第一步:检测 Oriented FAST 角点位置detector->detect(img_01, keypoints_01);detector->detect(img_02, keypoints_02);//-- 第二步:根据角点位置计算 BRIEF 描述子descriptor->compute(img_01, keypoints_01, descriptors_01);descriptor->compute(img_02, keypoints_02, descriptors_02);Mat outimg_01;drawKeypoints(img_01, keypoints_01, outimg_01, Scalar::all(-1), DrawMatchesFlags::DEFAULT);imwrite("ORB_features.png", outimg_01);imshow("ORB features", outimg_01);//-- 第三步:对两幅图像中的BRIEF描述子进行匹配,计算 Hamming 距离// matches 用来存储匹配点对的信息,包括//queryIdx:测试图像的特征点描述符的下标//trainIdx:样本图像的特征点描述符下标//distance:特征点描述子的欧式距离vector<DMatch> matches;matcher->match(descriptors_01, descriptors_02, matches);//-- 第四步:匹配点对筛选(距离过大的一对点将被认为误匹配)// 找出所有匹配之间的最小距离和最大距离, 即最相似的和最不相似的两组点之间的距离auto min_max = minmax_element(matches.begin(), matches.end(),[] (const DMatch &m1, const DMatch &m2) {return m1.distance < m2.distance;});double min_dist = min_max.first->distance;double max_dist = min_max.second->distance;//当描述子之间的距离大于两倍的最小距离时,即认为匹配有误.// 但有时候最小距离会非常小,设置一个经验值30作为下限.vector<DMatch> good_matches;for(int i = 0; i < descriptors_01.rows; i++){if(matches[i].distance <= max(2*min_dist, 30.0))good_matches.push_back(matches[i]);}//-- 第五步:绘制匹配结果Mat img_match;Mat img_goodmatch;drawMatches(img_01, keypoints_01, img_02, keypoints_02, matches, img_match);drawMatches(img_01, keypoints_01, img_02, keypoints_02, good_matches, img_goodmatch);imwrite("all_matches.png", img_match);imwrite("good_matches.png", img_goodmatch);imshow("all matches", img_match);imshow("good matches", img_goodmatch);/*******************************************************************/// 下面用 RANSAC 算法去除误匹配// 主要分为三个部分:// 1)根据matches将特征点对齐,将坐标转换为float类型// 2)使用求基础矩阵方法 findFundamentalMat,得到RansacStatus// 3)根据RansacStatus来将误匹配的点也即RansacStatus[i]=0的点删除// 1)根据 matches 将特征点对齐(也就是 使对应的一对特征点的下标相同)vector<KeyPoint> R_keypoint_01, R_keypoint_02;        // 存储对应的特征点for(size_t i = 0; i < matches.size(); i++){R_keypoint_01.push_back(keypoints_01[matches[i].queryIdx]);     // 存储img01中能与img02匹配的特征点的索引值R_keypoint_02.push_back(keypoints_02[matches[i].trainIdx]);}// 像素坐标转换成 floatvector<Point2f> p01, p02;for(size_t i = 0; i < matches.size(); i++){p01.push_back(R_keypoint_01[i].pt);          // 坐标p02.push_back(R_keypoint_02[i].pt);}// 利用基础矩阵剔除误匹配点vector<uchar> RansacStatus;Mat Fundamental = findFundamentalMat(p01, p02, RansacStatus, FM_RANSAC);vector<KeyPoint> RR_keypoint_01, RR_keypoint_02;vector<DMatch> RR_matches;                         // 筛选后的匹配点int index = 0;for(size_t i = 0; i < matches.size(); i++){if(RansacStatus[i] != 0){RR_keypoint_01.push_back(R_keypoint_01[i]);RR_keypoint_02.push_back(R_keypoint_02[i]);matches[i].queryIdx = index;matches[i].trainIdx = index;RR_matches.push_back(matches[i]);index++;}}Mat img_RR_matches;drawMatches(img_01, RR_keypoint_01, img_02, RR_keypoint_02, RR_matches, img_RR_matches);imwrite("after_RANSAC.png", img_RR_matches);imshow("after RANSAC", img_RR_matches);waitKey(0);return 0;
}

这篇关于02 RANSAC算法 及 Python 实现的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/424247

相关文章

一文教你Python如何快速精准抓取网页数据

《一文教你Python如何快速精准抓取网页数据》这篇文章主要为大家详细介绍了如何利用Python实现快速精准抓取网页数据,文中的示例代码简洁易懂,具有一定的借鉴价值,有需要的小伙伴可以了解下... 目录1. 准备工作2. 基础爬虫实现3. 高级功能扩展3.1 抓取文章详情3.2 保存数据到文件4. 完整示例

使用Python实现IP地址和端口状态检测与监控

《使用Python实现IP地址和端口状态检测与监控》在网络运维和服务器管理中,IP地址和端口的可用性监控是保障业务连续性的基础需求,本文将带你用Python从零打造一个高可用IP监控系统,感兴趣的小伙... 目录概述:为什么需要IP监控系统使用步骤说明1. 环境准备2. 系统部署3. 核心功能配置系统效果展

基于Python打造一个智能单词管理神器

《基于Python打造一个智能单词管理神器》这篇文章主要为大家详细介绍了如何使用Python打造一个智能单词管理神器,从查询到导出的一站式解决,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1. 项目概述:为什么需要这个工具2. 环境搭建与快速入门2.1 环境要求2.2 首次运行配置3. 核心功能使用指

Python实现微信自动锁定工具

《Python实现微信自动锁定工具》在数字化办公时代,微信已成为职场沟通的重要工具,但临时离开时忘记锁屏可能导致敏感信息泄露,下面我们就来看看如何使用Python打造一个微信自动锁定工具吧... 目录引言:当微信隐私遇到自动化守护效果展示核心功能全景图技术亮点深度解析1. 无操作检测引擎2. 微信路径智能获

Python中pywin32 常用窗口操作的实现

《Python中pywin32常用窗口操作的实现》本文主要介绍了Python中pywin32常用窗口操作的实现,pywin32主要的作用是供Python开发者快速调用WindowsAPI的一个... 目录获取窗口句柄获取最前端窗口句柄获取指定坐标处的窗口根据窗口的完整标题匹配获取句柄根据窗口的类别匹配获取句

利用Python打造一个Excel记账模板

《利用Python打造一个Excel记账模板》这篇文章主要为大家详细介绍了如何使用Python打造一个超实用的Excel记账模板,可以帮助大家高效管理财务,迈向财富自由之路,感兴趣的小伙伴快跟随小编一... 目录设置预算百分比超支标红预警记账模板功能介绍基础记账预算管理可视化分析摸鱼时间理财法碎片时间利用财

在 Spring Boot 中实现异常处理最佳实践

《在SpringBoot中实现异常处理最佳实践》本文介绍如何在SpringBoot中实现异常处理,涵盖核心概念、实现方法、与先前查询的集成、性能分析、常见问题和最佳实践,感兴趣的朋友一起看看吧... 目录一、Spring Boot 异常处理的背景与核心概念1.1 为什么需要异常处理?1.2 Spring B

Python中的Walrus运算符分析示例详解

《Python中的Walrus运算符分析示例详解》Python中的Walrus运算符(:=)是Python3.8引入的一个新特性,允许在表达式中同时赋值和返回值,它的核心作用是减少重复计算,提升代码简... 目录1. 在循环中避免重复计算2. 在条件判断中同时赋值变量3. 在列表推导式或字典推导式中简化逻辑

python处理带有时区的日期和时间数据

《python处理带有时区的日期和时间数据》这篇文章主要为大家详细介绍了如何在Python中使用pytz库处理时区信息,包括获取当前UTC时间,转换为特定时区等,有需要的小伙伴可以参考一下... 目录时区基本信息python datetime使用timezonepandas处理时区数据知识延展时区基本信息

Python位移操作和位运算的实现示例

《Python位移操作和位运算的实现示例》本文主要介绍了Python位移操作和位运算的实现示例,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一... 目录1. 位移操作1.1 左移操作 (<<)1.2 右移操作 (>>)注意事项:2. 位运算2.1