C++中String类的深浅拷贝,写时拷贝

2023-11-24 06:58
文章标签 c++ string 拷贝 深浅 写时

本文主要是介绍C++中String类的深浅拷贝,写时拷贝,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1.string传统拷贝
2.string现代拷贝
3.string计数拷贝
4.string写时拷贝

1.String类,只给了构造函数和析构函数,拷贝构造函数和赋值运算符重载都是编译器合成。

class String
{
public:String(const char* str = ""){if (NULL == str){_str = new char[1];_str = '\0';}else{_str = new char[strlen(str) + 1];strcpy(_str, str);}}~String(){if (_str != NULL){delete []_str;_str = NULL;}}private:char* _str;
};int main()
{String s1;String s2("123456");String s3(s2);s1 = s2;return 0;
}

上面的代码,在编译的时候没有错误,但是在程序运行时出现了错误。程序调用构造函数生成了对象s1,由于我们的构造函数为缺省构造函数,所以会开辟一段空间存放‘\0’。s2也调用构造函数生成对象s2,并有自己的内存存放着字符串“123456\0”。由于上面代码没有显式的拷贝构造函数定义和赋值运算符重载,所以s3通过编译器合成的拷贝构造函数,拷贝构造s2生成。s1赋值运算s2得到内容。编译器合成的赋值运算符重载,只是把s1的_str指向s2的空间,并没有释放和标记s1的空间,所以会导致s1的空间找不到,空间泄露了。

可以看到对象s1s2s3的内容都是“123456”

可以看到对象s1,s2,s3的内容都是“123456”
由于生成了3个对象,所以在程序结束时,编译器会自动调用析构函数。析构函数执行的是释放当前对象的空间,并把对象里的_str指针指向NULL。当调用析构函数时,首先析构s3,把对象s3中_str指向的内存释放,并指向为NULL。再析构s2时,想把s2中的_str指向的内存释放,这时出现了错误。
我们可以看到3个对象的_str都指向的同一块内存:

这里写图片描述

由于s3对象在析构的时候已经将该空间释放了,再在s2中释放时,已经无法释放。所以我们可以看到由编译器自己合成的赋值运算符重载,拷贝构造函数,只是把对象的值直接给了当前对象,并没有为当前对象另开辟空间。这时就出现了一块空间被多个对象使用。
这就是浅拷贝,一块空间被多个对象使用。当我们在调用析构函数时,如果不处理这种情况,就直接释放空间,就会导致程序崩溃。


2.解决浅拷贝方式一:普通版深拷贝

class String
{
public:String(const char* str = ""){if (NULL == str){_str = new char[1];_str = '\0';}else{_str = new char[strlen(str) + 1];strcpy(_str, str);}}String(const String& s){_str = new char[strlen(s._str) + 1];strcpy(_str, s._str);}String& operator=(const String& s){if (&s != this){if (_str)delete []_str;//释放原有空间_str = new char[strlen(s._str) + 1];strcpy(_str, s._str);}return *this;}~String(){if (_str != NULL){delete []_str;_str = NULL;}}private:char* _str;
};int main()
{String s1;String s2("123456");String s3(s2);s1 = s2;return 0;
}

String类深拷贝,自己显式的定义了,拷贝构造函数和赋值运算符重载。在调用拷贝构造函数和赋值运算符重载的时候,都开辟了自己的内存存放字符串。解决了浅拷贝时,多个对象共用同一块空间的问题,删除对象时,析构函数释放了对象自己的空间。

每个对象都有自己的空间:
这里写图片描述
调用析构函数,释放了自己的空间:
这里写图片描述

这里写图片描述


3.解决浅拷贝方式二:简介版的深拷贝

class String
{
public:String(const char* str = ""){if (str == NULL){_str = new char[1];_str = '\0';}else{_str = new char[strlen(str) + 1];strcpy(_str, str);}}String(const String& s):_str(NULL)                //一定要初始化,否则该对象和tmp交换_str的时候,                             {                                    //tmp调用析构函数时找不到该对象原来_str所指向的地方String tmp(s._str);std::swap(_str, tmp._str);}String& operator=(String s){std::swap(_str, s._str);return *this;}~String(){if (_str != NULL){delete []_str;_str = NULL;}}
private:char* _str;
};int main()
{String s1;String s2("123456");String s3(s2);s1 = s2;return 0;
}

简洁版的深拷贝,和普通版的深拷贝,都是解决浅拷贝多个对象共用一块空间的问题。
简洁版的深拷贝,在拷贝构造函数时,通过构造一个临时的对象,把s2的的值拷贝进去,通过交换临时对象和s3对象的_str的指向,实现了拷贝构造,同时s3和s2没有共用同一块空间。拷贝构造函数一定要对该对象的_str指针初始化,否则在交换后,临时变量tmp的_str将有指向不可访问的空间,导致程序崩溃。
简洁版的深拷贝,在赋值运算符重载时,参数就是一个通过拷贝构造的对象s,对象s的_str与该对象的_str交换指向。与普通的深拷贝比较,普通的深拷贝方式,先释放原有的空间,再新申请一个新空间,再拷贝。申请空间有可能失败,不安全。所以简洁版的这种方式比较安全与简洁。

这里写图片描述


4.解决浅拷贝方式问题:引用计数实现(浅拷贝)

1.使用非静态成员变量计数器,每个类都拥有独立的计数器,而在对象的拷贝和赋值时,需要修改计数器的值,对象计数器之间缺乏共通性。
2.使用静态成员变量,不同对象之间需要独立的内存块,还需要独立的计数器,缺乏了独立性。
3.使用成员指针,满足了共通性和独立性。

class String
{
public:String(const char* str = ""){if (str == NULL){_str = new char[1];_str = '\0';}else{_str = new char[strlen(str) + 1];strcpy(_str, str);}_pCount = new int[1];(*_pCount) = 1;}String(const String& s){_str = s._str;_pCount = s._pCount;(*(s._pCount))++;}String& operator=(const String& s){if (&s != this){if (*_pCount == 1){delete []_str;delete _pCount;}_str = s._str;_pCount = s._pCount;(*(s._pCount))++;}return *this;}~String(){if ((_str != NULL)&&((--(*_pCount)) == 0))//判断是否为空,及引用计数是否为0{delete []_str;delete _pCount;_pCount = NULL;_str = NULL;}}
private:char* _str;//int _count; // static int _count; int *_pCount; 
};int main()
{String s1;String s2("123456");String s3(s2);s1 = s2;system("pause");return 0;
}

4.string写时拷贝
使用引用计数,还需要为指针开辟空间,产生了大量的内存碎片,所以我们可以优化,使计数器和字符串存在同一块内存内。优化如下:

class String
{
public:String(const char* str = ""){if (str == NULL){_str = new char[4+1];//4个字节是开辟给计数器的_str += 4;     //把指针移到字符串开始的位置*((int *)(_str - 4)) = 1;_str = '\0';}else{_str = new char[strlen(str) + 1 + 4];_str += 4;*((int *)(_str - 4)) = 1;strcpy(_str, str);}}String(const String& s){_str = s._str;++(*((int *)(_str - 4)));}String& operator=(const String& s){if (_str != s._str){if (*((int *)(_str - 4)) == 1){delete[](_str - 4);}_str = s._str;++(*((int *)(_str - 4)));}return *this;}~String(){if (((*((int *)(_str - 4)))--) == 1){delete[](_str - 4);_str = NULL;}}char& operator[](size_t index)  //写时拷贝,如果改变一个对象的内容,再开辟另一块内存出来存放{if (*((int *)(_str - 4)) > 1){char *tmp = new char[strlen(_str) + 1 + 4];tmp += 4;*((int *)(tmp - 4)) = 1;strcpy(tmp, _str);*((int *)(_str - 4)) -= 1;_str = tmp;}return _str[index];}
private:char* _str;//int _count; // static int _count; // int *_pCount; 
};int main()
{String s1;String s2("123456");String s3(s2);s1 = s2;S1[3] = 'A';system("pause");return 0;
}

ps:最后实现的String类存在线程安全问题。为什么存在线程安全问题?
因为在线程中,每个线程都是时间片轮流切换的在运行。如果一个线程刚想通过拷贝s2生成对象s3,时间片刚好到调用拷贝构造函数,也传完了参。这时时间片完了,轮到了下一个线程,而这个线程却是析构s2,并运行完了,这时时间片轮到了第一个线程,继续接上次运行到的位置,这时就出现了错误,发现s2没有了。

以上就是我总结的string类,希望对正在学习C++深浅拷贝的有所帮助。

这篇关于C++中String类的深浅拷贝,写时拷贝的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/421438

相关文章

C++右移运算符的一个小坑及解决

《C++右移运算符的一个小坑及解决》文章指出右移运算符处理负数时左侧补1导致死循环,与除法行为不同,强调需注意补码机制以正确统计二进制1的个数... 目录我遇到了这么一个www.chinasem.cn函数由此可以看到也很好理解总结我遇到了这么一个函数template<typename T>unsigned

C++统计函数执行时间的最佳实践

《C++统计函数执行时间的最佳实践》在软件开发过程中,性能分析是优化程序的重要环节,了解函数的执行时间分布对于识别性能瓶颈至关重要,本文将分享一个C++函数执行时间统计工具,希望对大家有所帮助... 目录前言工具特性核心设计1. 数据结构设计2. 单例模式管理器3. RAII自动计时使用方法基本用法高级用法

深入解析C++ 中std::map内存管理

《深入解析C++中std::map内存管理》文章详解C++std::map内存管理,指出clear()仅删除元素可能不释放底层内存,建议用swap()与空map交换以彻底释放,针对指针类型需手动de... 目录1️、基本清空std::map2️、使用 swap 彻底释放内存3️、map 中存储指针类型的对象

C++ STL-string类底层实现过程

《C++STL-string类底层实现过程》本文实现了一个简易的string类,涵盖动态数组存储、深拷贝机制、迭代器支持、容量调整、字符串修改、运算符重载等功能,模拟标准string核心特性,重点强... 目录实现框架一、默认成员函数1.默认构造函数2.构造函数3.拷贝构造函数(重点)4.赋值运算符重载函数

C++ vector越界问题的完整解决方案

《C++vector越界问题的完整解决方案》在C++开发中,std::vector作为最常用的动态数组容器,其便捷性与性能优势使其成为处理可变长度数据的首选,然而,数组越界访问始终是威胁程序稳定性的... 目录引言一、vector越界的底层原理与危害1.1 越界访问的本质原因1.2 越界访问的实际危害二、基

redis数据结构之String详解

《redis数据结构之String详解》Redis以String为基础类型,因C字符串效率低、非二进制安全等问题,采用SDS动态字符串实现高效存储,通过RedisObject封装,支持多种编码方式(如... 目录一、为什么Redis选String作为基础类型?二、SDS底层数据结构三、RedisObject

c++日志库log4cplus快速入门小结

《c++日志库log4cplus快速入门小结》文章浏览阅读1.1w次,点赞9次,收藏44次。本文介绍Log4cplus,一种适用于C++的线程安全日志记录API,提供灵活的日志管理和配置控制。文章涵盖... 目录简介日志等级配置文件使用关于初始化使用示例总结参考资料简介log4j 用于Java,log4c

C++归并排序代码实现示例代码

《C++归并排序代码实现示例代码》归并排序将待排序数组分成两个子数组,分别对这两个子数组进行排序,然后将排序好的子数组合并,得到排序后的数组,:本文主要介绍C++归并排序代码实现的相关资料,需要的... 目录1 算法核心思想2 代码实现3 算法时间复杂度1 算法核心思想归并排序是一种高效的排序方式,需要用

C++11范围for初始化列表auto decltype详解

《C++11范围for初始化列表autodecltype详解》C++11引入auto类型推导、decltype类型推断、统一列表初始化、范围for循环及智能指针,提升代码简洁性、类型安全与资源管理效... 目录C++11新特性1. 自动类型推导auto1.1 基本语法2. decltype3. 列表初始化3

C++11右值引用与Lambda表达式的使用

《C++11右值引用与Lambda表达式的使用》C++11引入右值引用,实现移动语义提升性能,支持资源转移与完美转发;同时引入Lambda表达式,简化匿名函数定义,通过捕获列表和参数列表灵活处理变量... 目录C++11新特性右值引用和移动语义左值 / 右值常见的左值和右值移动语义移动构造函数移动复制运算符