EI论文故障识别程序:DBN深度置信/信念网络的故障识别Matlab程序,数据由Excel导入,直接运行!

本文主要是介绍EI论文故障识别程序:DBN深度置信/信念网络的故障识别Matlab程序,数据由Excel导入,直接运行!,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

​适用平台:Matlab2021b版及以上

本程序参考中文EI期刊《基于变分模态分解和改进灰狼算法优化深度置信网络的自动转换开关故障识别》中的深度置信网络(Deep Belief Network,DBN)部分进行故障识别,程序注释清晰,干货满满,下面对文章和程序做简要介绍。

这篇文献使用深度置信网络(DBN)来进行自动转换开关故障识别。DBN的训练过程分为预训练和反向微调两个阶段。预训练阶段中,通过RBMs的逐层预训练,数据从底层输入并逐层传递。每个RBM包含一个视觉层和一个隐藏层,并通过权重连接。在反向微调阶段,采用梯度下降算法对DBN进行有监督的训练,减小每层的预测误差。在RBMs中,使用对比度发散算法近似获得模型的无偏生成概率。通过合适的设置学习率和动量系数,优化DBN算法的网络结构参数,最终实现DBN在自动转换开关故障识别中的应用。

DBN结合电力系统故障识别的创新点主要体现在其对复杂、非线性系统进行建模和特征提取方面。以下是DBN在电力系统故障识别方面的创新点的详细介绍:

分层学习结构:DBN采用了分层学习的结构,包含输入层、隐含层(多个)和输出层。每一层的节点都与下一层的节点相连接,形成一个前馈的结构。这种结构使得DBN能够逐层学习数据的抽象表示,有助于捕捉电力系统数据中的复杂特征和模式。

非监督学习和有监督学习相结合:DBN的训练过程包含两个阶段:首先是无监督的贪婪逐层预训练,然后是有监督的调整网络参数。通过无监督学习,DBN可以从数据中提取高层次的特征表示,然后通过有监督学习来调整这些特征表示以完成具体任务,如故障识别。

适应性特征提取:DBN通过多层次的特征提取,能够适应复杂的电力系统数据模式。这些特征对于故障识别任务而言更具有表征能力,使得系统可以更好地区分正常运行和故障状态。

对抗性训练和鲁棒性:DBN在训练中引入对抗性训练的思想,通过使网络在面对不同情况时更具鲁棒性。这对于电力系统,面对可能的噪声和干扰,以及未知的故障模式,都具有重要的意义。

大数据处理能力:DBN在处理大规模数据方面表现出色,而电力系统通常会产生大量的实时数据。DBN的能力使其能够有效地处理这些数据,并从中提取对于故障识别有关键意义的信息。

潜在变量的建模:DBN通过潜在变量的建模,能够更好地理解电力系统中的隐含关系。这些潜在变量可以捕获系统中的复杂动态和非线性关系,从而提高故障识别的准确性。

总结:DBN在电力系统故障识别中的创新点主要体现在其深度学习结构、分层特征提取、对抗性训练等方面,使其能够更好地应对电力系统数据的复杂性和多变性。

适用于各种数据分类场景,如滚动轴承故障、变压器油气故障、电力系统输电线路故障、绝缘子、配网、电能质量扰动,等领域的识别、诊断和分类。

以下是程序的输出:

测试集的混淆矩阵:(右下角为最终准确率,精确率是混淆矩阵的最下面一行,召回率是混淆矩阵的最右边一列)

精确率:是指在所有被模型预测为正类别的样本中,有多少是真正的正类别。

召回率:是指在所有实际正类别的样本中,有多少被模型正确地预测为正类别。

训练集的实际故障类别和模型识别的故障类别:

模型的训练曲线:

数据格式:一行为一个故障波形样本,最后一列为该样本所属的故障类别。

DBN建模部分代码:

%% 建立DBN
dbn.sizes = [10 5];                   % DBN各层神经元个数 第二层10 第三层5
opts.numepochs = 300;                 % RBM 训练时 迭代次数
opts.batchsize = 30;                  % 每批次使用30个样本进行训练
opts.momentum  =  0;                  % 学习率的动量
opts.alpha     =  0.01;               % 学习率因子
dbn = dbnsetup(dbn, p_train, opts);   % 建立DBN模型
dbn = dbntrain(dbn, p_train, opts);   % 训练DBN模型%% DBN移植到深层NN
nn = dbnunfoldtonn(dbn, 8);              % 反向微调(8代表有8种输出)
nn.activation_function = 'sigm';         % 激活函数%% 反向调整DBN
opts.numepochs = 500;                    % 反向微调次数
opts.alpha     = 0.001;                  % 学习率因子
opts.batchsize = 30;                     % 反向微调每次样本数
opts.output = 'softmax';                 % 激活函数
nn = nntrain(nn, p_train, t_train, opts);% 训练%% 预测 
T_sim1 = nnpredict(nn, p_train); 
T_sim2 = nnpredict(nn, p_test);%% 完整代码:https://mbd.pub/o/bread/ZZeTlpZw

部分图片来源于网络,侵权联系删除!

欢迎感兴趣的小伙伴关注我们的公众号,或点击上方链接获得完整版代码哦~,关注小编会继续推送更有质量的学习资料、文章程序代码~

这篇关于EI论文故障识别程序:DBN深度置信/信念网络的故障识别Matlab程序,数据由Excel导入,直接运行!的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/420578

相关文章

Java中Redisson 的原理深度解析

《Java中Redisson的原理深度解析》Redisson是一个高性能的Redis客户端,它通过将Redis数据结构映射为Java对象和分布式对象,实现了在Java应用中方便地使用Redis,本文... 目录前言一、核心设计理念二、核心架构与通信层1. 基于 Netty 的异步非阻塞通信2. 编解码器三、

Java HashMap的底层实现原理深度解析

《JavaHashMap的底层实现原理深度解析》HashMap基于数组+链表+红黑树结构,通过哈希算法和扩容机制优化性能,负载因子与树化阈值平衡效率,是Java开发必备的高效数据结构,本文给大家介绍... 目录一、概述:HashMap的宏观结构二、核心数据结构解析1. 数组(桶数组)2. 链表节点(Node

Java 虚拟线程的创建与使用深度解析

《Java虚拟线程的创建与使用深度解析》虚拟线程是Java19中以预览特性形式引入,Java21起正式发布的轻量级线程,本文给大家介绍Java虚拟线程的创建与使用,感兴趣的朋友一起看看吧... 目录一、虚拟线程简介1.1 什么是虚拟线程?1.2 为什么需要虚拟线程?二、虚拟线程与平台线程对比代码对比示例:三

Python函数作用域与闭包举例深度解析

《Python函数作用域与闭包举例深度解析》Python函数的作用域规则和闭包是编程中的关键概念,它们决定了变量的访问和生命周期,:本文主要介绍Python函数作用域与闭包的相关资料,文中通过代码... 目录1. 基础作用域访问示例1:访问全局变量示例2:访问外层函数变量2. 闭包基础示例3:简单闭包示例4

Linux下利用select实现串口数据读取过程

《Linux下利用select实现串口数据读取过程》文章介绍Linux中使用select、poll或epoll实现串口数据读取,通过I/O多路复用机制在数据到达时触发读取,避免持续轮询,示例代码展示设... 目录示例代码(使用select实现)代码解释总结在 linux 系统里,我们可以借助 select、

mybatis直接执行完整sql及踩坑解决

《mybatis直接执行完整sql及踩坑解决》MyBatis可通过select标签执行动态SQL,DQL用ListLinkedHashMap接收结果,DML用int处理,注意防御SQL注入,优先使用#... 目录myBATiFBNZQs直接执行完整sql及踩坑select语句采用count、insert、u

java程序远程debug原理与配置全过程

《java程序远程debug原理与配置全过程》文章介绍了Java远程调试的JPDA体系,包含JVMTI监控JVM、JDWP传输调试命令、JDI提供调试接口,通过-Xdebug、-Xrunjdwp参数配... 目录背景组成模块间联系IBM对三个模块的详细介绍编程使用总结背景日常工作中,每个程序员都会遇到bu

前端导出Excel文件出现乱码或文件损坏问题的解决办法

《前端导出Excel文件出现乱码或文件损坏问题的解决办法》在现代网页应用程序中,前端有时需要与后端进行数据交互,包括下载文件,:本文主要介绍前端导出Excel文件出现乱码或文件损坏问题的解决办法,... 目录1. 检查后端返回的数据格式2. 前端正确处理二进制数据方案 1:直接下载(推荐)方案 2:手动构造

uni-app小程序项目中实现前端图片压缩实现方式(附详细代码)

《uni-app小程序项目中实现前端图片压缩实现方式(附详细代码)》在uni-app开发中,文件上传和图片处理是很常见的需求,但也经常会遇到各种问题,下面:本文主要介绍uni-app小程序项目中实... 目录方式一:使用<canvas>实现图片压缩(推荐,兼容性好)示例代码(小程序平台):方式二:使用uni

C#利用Free Spire.XLS for .NET复制Excel工作表

《C#利用FreeSpire.XLSfor.NET复制Excel工作表》在日常的.NET开发中,我们经常需要操作Excel文件,本文将详细介绍C#如何使用FreeSpire.XLSfor.NET... 目录1. 环境准备2. 核心功能3. android示例代码3.1 在同一工作簿内复制工作表3.2 在不同