PyTorch深度学习实践 3.梯度下降算法-->mini-batch stochastic gradient descent

本文主要是介绍PyTorch深度学习实践 3.梯度下降算法-->mini-batch stochastic gradient descent,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

分治法

w1和w2
假设横竖都是64
横竖都分成4份,一共16份。
第一次在这16份里,找出比较小的点,
再来几轮,基本就OK了。
从原来的16x16变成了16+16
在这里插入图片描述

贪心法

梯度下降法,局部最优,实际上,大家发现神经网络里并没有很多的局部最优点

鞍点g=0,无法迭代了
在这里插入图片描述
在这里插入图片描述

import numpy as np
import matplotlib.pyplot as pltxxl=0.01w=1.0# 定义模型
def forward(x):return x*wdef cost(xs,ys):cost=0for x,y in zip(xs,ys):y_prediction=forward(x)cost+=(y_prediction-y)**2return cost/len(xs)def gradient(xs,ys):grad=0for x,y in zip(xs,ys):y_prediction = forward(x)grad+=2 * x * (y_prediction - y)return grad/len(xs)# 定义训练集
x_data = [1.0, 2.0, 3.0]
y_data = [2.0, 4.0, 6.0]print('Prediciton(before training)',4,forward(4))for epoch in range(100):cost_val=cost(x_data,y_data)grad=gradient(x_data,y_data)w=w-xxl*gradprint("progress:",epoch,"w=",w,"loss=",cost_val)
print('Prediction(after training)',4,forward(4))

在这里插入图片描述

指数加权均值,更平滑
在这里插入图片描述
一定要收敛,发散说明失败了,可能是学习率太大

在这里插入图片描述
随机梯度下降,可以克服鞍点
在这里插入图片描述
在这里插入图片描述

项目速度效果(鞍点)
梯度下降快(因为可以并行 xi和xi+1的函数值无关)
随机梯度下降慢(只能串行,因为w与上一个有关)

所以折中
批量随机梯度下降batch
mini-batch stochastic gradient descent
在这里插入图片描述

# 随机梯度下降
import numpy as np
import matplotlib.pyplot as pltxxl=0.01w=1.0# 定义模型
def forward(x):return x*wdef Loss_Function(x,y):y_prediction=forward(x)return (y_prediction-y)**2def gradient(x,y):y_prediction = forward(x)return 2 * x *(y_prediction-y)# 定义训练集
x_data = [1.0, 2.0, 3.0]
y_data = [2.0, 4.0, 6.0]print('Prediciton(before training)',4,forward(4))for epoch in range(100):for x,y in zip(x_data,y_data):grad=gradient(x,y)w=w-xxl*gradprint('\tgradient:',x,y,grad)l=Loss_Function(x,y)print("progress:",epoch,"w=",w,"loss=",l)
print('Prediction(after training)',4,forward(4))

在这里插入图片描述

这篇关于PyTorch深度学习实践 3.梯度下降算法-->mini-batch stochastic gradient descent的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/419737

相关文章

Spring Security简介、使用与最佳实践

《SpringSecurity简介、使用与最佳实践》SpringSecurity是一个能够为基于Spring的企业应用系统提供声明式的安全访问控制解决方案的安全框架,本文给大家介绍SpringSec... 目录一、如何理解 Spring Security?—— 核心思想二、如何在 Java 项目中使用?——

防止Linux rm命令误操作的多场景防护方案与实践

《防止Linuxrm命令误操作的多场景防护方案与实践》在Linux系统中,rm命令是删除文件和目录的高效工具,但一旦误操作,如执行rm-rf/或rm-rf/*,极易导致系统数据灾难,本文针对不同场景... 目录引言理解 rm 命令及误操作风险rm 命令基础常见误操作案例防护方案使用 rm编程 别名及安全删除

C++统计函数执行时间的最佳实践

《C++统计函数执行时间的最佳实践》在软件开发过程中,性能分析是优化程序的重要环节,了解函数的执行时间分布对于识别性能瓶颈至关重要,本文将分享一个C++函数执行时间统计工具,希望对大家有所帮助... 目录前言工具特性核心设计1. 数据结构设计2. 单例模式管理器3. RAII自动计时使用方法基本用法高级用法

PHP应用中处理限流和API节流的最佳实践

《PHP应用中处理限流和API节流的最佳实践》限流和API节流对于确保Web应用程序的可靠性、安全性和可扩展性至关重要,本文将详细介绍PHP应用中处理限流和API节流的最佳实践,下面就来和小编一起学习... 目录限流的重要性在 php 中实施限流的最佳实践使用集中式存储进行状态管理(如 Redis)采用滑动

ShardingProxy读写分离之原理、配置与实践过程

《ShardingProxy读写分离之原理、配置与实践过程》ShardingProxy是ApacheShardingSphere的数据库中间件,通过三层架构实现读写分离,解决高并发场景下数据库性能瓶... 目录一、ShardingProxy技术定位与读写分离核心价值1.1 技术定位1.2 读写分离核心价值二

深度解析Python中递归下降解析器的原理与实现

《深度解析Python中递归下降解析器的原理与实现》在编译器设计、配置文件处理和数据转换领域,递归下降解析器是最常用且最直观的解析技术,本文将详细介绍递归下降解析器的原理与实现,感兴趣的小伙伴可以跟随... 目录引言:解析器的核心价值一、递归下降解析器基础1.1 核心概念解析1.2 基本架构二、简单算术表达

深度解析Java @Serial 注解及常见错误案例

《深度解析Java@Serial注解及常见错误案例》Java14引入@Serial注解,用于编译时校验序列化成员,替代传统方式解决运行时错误,适用于Serializable类的方法/字段,需注意签... 目录Java @Serial 注解深度解析1. 注解本质2. 核心作用(1) 主要用途(2) 适用位置3

深入浅出Spring中的@Autowired自动注入的工作原理及实践应用

《深入浅出Spring中的@Autowired自动注入的工作原理及实践应用》在Spring框架的学习旅程中,@Autowired无疑是一个高频出现却又让初学者头疼的注解,它看似简单,却蕴含着Sprin... 目录深入浅出Spring中的@Autowired:自动注入的奥秘什么是依赖注入?@Autowired

MySQL分库分表的实践示例

《MySQL分库分表的实践示例》MySQL分库分表适用于数据量大或并发压力高的场景,核心技术包括水平/垂直分片和分库,需应对分布式事务、跨库查询等挑战,通过中间件和解决方案实现,最佳实践为合理策略、备... 目录一、分库分表的触发条件1.1 数据量阈值1.2 并发压力二、分库分表的核心技术模块2.1 水平分

Java MCP 的鉴权深度解析

《JavaMCP的鉴权深度解析》文章介绍JavaMCP鉴权的实现方式,指出客户端可通过queryString、header或env传递鉴权信息,服务器端支持工具单独鉴权、过滤器集中鉴权及启动时鉴权... 目录一、MCP Client 侧(负责传递,比较简单)(1)常见的 mcpServers json 配置