PyTorch深度学习实践 3.梯度下降算法-->mini-batch stochastic gradient descent

本文主要是介绍PyTorch深度学习实践 3.梯度下降算法-->mini-batch stochastic gradient descent,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

分治法

w1和w2
假设横竖都是64
横竖都分成4份,一共16份。
第一次在这16份里,找出比较小的点,
再来几轮,基本就OK了。
从原来的16x16变成了16+16
在这里插入图片描述

贪心法

梯度下降法,局部最优,实际上,大家发现神经网络里并没有很多的局部最优点

鞍点g=0,无法迭代了
在这里插入图片描述
在这里插入图片描述

import numpy as np
import matplotlib.pyplot as pltxxl=0.01w=1.0# 定义模型
def forward(x):return x*wdef cost(xs,ys):cost=0for x,y in zip(xs,ys):y_prediction=forward(x)cost+=(y_prediction-y)**2return cost/len(xs)def gradient(xs,ys):grad=0for x,y in zip(xs,ys):y_prediction = forward(x)grad+=2 * x * (y_prediction - y)return grad/len(xs)# 定义训练集
x_data = [1.0, 2.0, 3.0]
y_data = [2.0, 4.0, 6.0]print('Prediciton(before training)',4,forward(4))for epoch in range(100):cost_val=cost(x_data,y_data)grad=gradient(x_data,y_data)w=w-xxl*gradprint("progress:",epoch,"w=",w,"loss=",cost_val)
print('Prediction(after training)',4,forward(4))

在这里插入图片描述

指数加权均值,更平滑
在这里插入图片描述
一定要收敛,发散说明失败了,可能是学习率太大

在这里插入图片描述
随机梯度下降,可以克服鞍点
在这里插入图片描述
在这里插入图片描述

项目速度效果(鞍点)
梯度下降快(因为可以并行 xi和xi+1的函数值无关)
随机梯度下降慢(只能串行,因为w与上一个有关)

所以折中
批量随机梯度下降batch
mini-batch stochastic gradient descent
在这里插入图片描述

# 随机梯度下降
import numpy as np
import matplotlib.pyplot as pltxxl=0.01w=1.0# 定义模型
def forward(x):return x*wdef Loss_Function(x,y):y_prediction=forward(x)return (y_prediction-y)**2def gradient(x,y):y_prediction = forward(x)return 2 * x *(y_prediction-y)# 定义训练集
x_data = [1.0, 2.0, 3.0]
y_data = [2.0, 4.0, 6.0]print('Prediciton(before training)',4,forward(4))for epoch in range(100):for x,y in zip(x_data,y_data):grad=gradient(x,y)w=w-xxl*gradprint('\tgradient:',x,y,grad)l=Loss_Function(x,y)print("progress:",epoch,"w=",w,"loss=",l)
print('Prediction(after training)',4,forward(4))

在这里插入图片描述

这篇关于PyTorch深度学习实践 3.梯度下降算法-->mini-batch stochastic gradient descent的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!


原文地址:https://blog.csdn.net/qq_35988224/article/details/112847954
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.chinasem.cn/article/419737

相关文章

PyTorch中cdist和sum函数使用示例详解

《PyTorch中cdist和sum函数使用示例详解》torch.cdist是PyTorch中用于计算**两个张量之间的成对距离(pairwisedistance)**的函数,常用于点云处理、图神经网... 目录基本语法输出示例1. 简单的 2D 欧几里得距离2. 批量形式(3D Tensor)3. 使用不

Spring Boot拦截器Interceptor与过滤器Filter深度解析(区别、实现与实战指南)

《SpringBoot拦截器Interceptor与过滤器Filter深度解析(区别、实现与实战指南)》:本文主要介绍SpringBoot拦截器Interceptor与过滤器Filter深度解析... 目录Spring Boot拦截器(Interceptor)与过滤器(Filter)深度解析:区别、实现与实

Vue 2 项目中配置 Tailwind CSS 和 Font Awesome 的最佳实践举例

《Vue2项目中配置TailwindCSS和FontAwesome的最佳实践举例》:本文主要介绍Vue2项目中配置TailwindCSS和FontAwesome的最... 目录vue 2 项目中配置 Tailwind css 和 Font Awesome 的最佳实践一、Tailwind CSS 配置1. 安

MyBatis分页插件PageHelper深度解析与实践指南

《MyBatis分页插件PageHelper深度解析与实践指南》在数据库操作中,分页查询是最常见的需求之一,传统的分页方式通常有两种内存分页和SQL分页,MyBatis作为优秀的ORM框架,本身并未提... 目录1. 为什么需要分页插件?2. PageHelper简介3. PageHelper集成与配置3.

使用雪花算法产生id导致前端精度缺失问题解决方案

《使用雪花算法产生id导致前端精度缺失问题解决方案》雪花算法由Twitter提出,设计目的是生成唯一的、递增的ID,下面:本文主要介绍使用雪花算法产生id导致前端精度缺失问题的解决方案,文中通过代... 目录一、问题根源二、解决方案1. 全局配置Jackson序列化规则2. 实体类必须使用Long封装类3.

PyTorch高级特性与性能优化方式

《PyTorch高级特性与性能优化方式》:本文主要介绍PyTorch高级特性与性能优化方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、自动化机制1.自动微分机制2.动态计算图二、性能优化1.内存管理2.GPU加速3.多GPU训练三、分布式训练1.分布式数据

Maven 插件配置分层架构深度解析

《Maven插件配置分层架构深度解析》:本文主要介绍Maven插件配置分层架构深度解析,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录Maven 插件配置分层架构深度解析引言:当构建逻辑遇上复杂配置第一章 Maven插件配置的三重境界1.1 插件配置的拓扑

Spring Boot集成SLF4j从基础到高级实践(最新推荐)

《SpringBoot集成SLF4j从基础到高级实践(最新推荐)》SLF4j(SimpleLoggingFacadeforJava)是一个日志门面(Facade),不是具体的日志实现,这篇文章主要介... 目录一、日志框架概述与SLF4j简介1.1 为什么需要日志框架1.2 主流日志框架对比1.3 SLF4

重新对Java的类加载器的学习方式

《重新对Java的类加载器的学习方式》:本文主要介绍重新对Java的类加载器的学习方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1、介绍1.1、简介1.2、符号引用和直接引用1、符号引用2、直接引用3、符号转直接的过程2、加载流程3、类加载的分类3.1、显示

Spring Boot 常用注解详解与使用最佳实践建议

《SpringBoot常用注解详解与使用最佳实践建议》:本文主要介绍SpringBoot常用注解详解与使用最佳实践建议,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要... 目录一、核心启动注解1. @SpringBootApplication2. @EnableAutoConfi