mysql锁机制要览+示例讲解

2023-11-23 17:10

本文主要是介绍mysql锁机制要览+示例讲解,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

作者:杨恒

背景

2、隔离级别

理论

1、read uncommited
可以读取未提交记录。此隔离级别,不会使用,忽略
2、read commited
针对当前读,rc隔离级别保证对读取到的记录加锁(记录锁),存在幻读现象
3、repeatable read
针对当前读,rr隔离级别保证对读取到的记录加锁(记录锁),同时保证对读取的范围加锁,新的满足查询条件的记录不能插入(间隙锁),不存在幻读现象
4、seriablizable
从mvcc并发控制退化为基于锁的并发控制。不区别快照读和当前读,所有的读操作均为当前读,读加读锁(S锁),写加写锁(X锁)

隔离级别脏读可能性不可重复读可能性幻读可能性加锁读
read uncommitedyesyesyesno
read commitednoyesyesno
repeatable readnonoyesno
serializablenononoyes

5、rc 与rr对比:
set global transaction isolation level read commited;
set global transaction isolation level repeatable read;

测试

drop table if exists t;
create table t(id int,name varchar(10),key idx_id(id),primary key(name))engine=innodb;
insert into t values(1,‘a’),(3,‘c’),(5,‘e’),(8,‘g’),(11,‘j’);

t1t2
begin;
select * from t where id=1;
commit;
begin;
update t set name=‘yy’ where id=1;
commit;

3、锁

理论

基本锁:共享锁与排它锁

mysql允许拿到S锁的事务读一行,允许拿到X锁的事务更新或删除一行
加了S锁的记录,允许其他事务再加S锁,不允许其他事务再加X锁;
加了X锁的记录,不允许其他事务再加S锁或X锁

mysql对外提供加这两种锁的语法如下:
加S锁: select … lock in share mode
加X锁: select … for update

意向锁(表级锁):意向共享锁(IS锁)和意向排它锁(IX锁)

事务在请求S锁和X锁前,需要先获得对应的IS、IX锁
意向锁产生的主要目的是为了处理行锁和表锁之间的冲突,用于表明“某个事务正在某一行上持有了锁,或者准备去持有锁”

共享锁、排它锁与意向锁的兼容矩阵(先行后列)

 XIXSIS
X冲突冲突冲突冲突
IX冲突冲突兼容兼容
S冲突冲突兼容兼容
IS冲突兼容兼容兼容
行锁
记录锁

仅仅锁住索引记录的一行。单行索引记录上加锁,record lock锁住的永远是索引,而非记录本身,即使该表上没有任何索引,那么innodb会在后台创建一个隐藏的聚簇主键索引,那么锁住的就是这个隐藏的聚簇主键索引。
所以说当一条sql没有走任何索引时,那么将会在每一条聚簇索引后面加X锁,这个类似于表锁,但原理上和表锁应该是完全不同的。(Is it true??)

间隙锁

区间锁,仅仅锁住一个索引区间(开区间)
在索引记录之间的间隙中加锁,或者是在某一条索引记录之前或之后加锁,并不包括该索引记录本身

next-key锁

record lock + gap lock,左开右闭区间。默认情况下,innodb使用next-key locks来锁定记录。但当查询的索引含有唯一属性的时候,next-key lock会进行优化,将其降级为record lock,即仅锁住索引本身,不是范围

插入意向锁:特殊的间隙锁

gap lock中存在一种插入意向锁,在insert操作时产生。在多事务同时写入不同数据至同一索引间隙的时候,并不需要等待其他事务完成,不会发生锁等待。
假设有一个记录索引包含键值4和7,不同的事务分别插入5和6,每个事务都会产生一个加在4-7之间的插入意向锁,获取在插入行上的排它锁,但是不会被互相锁住,因为数据行并不冲突。

行锁的兼容矩阵 (先列(如gap)后行的锁定顺序)

 gapinsertrecordnext-key
gap兼容兼容兼容兼容
insert冲突兼容兼容冲突
record兼容兼容冲突冲突
next-key兼容兼容冲突冲突

1、已有的insert锁不阻止任何准备加的锁
2、gap、next-key会阻止insert
3、gap和record、next-key不会冲突
4、record和record、next-key之间相互冲突

4、测试

实例一、

t1t2
begin;
select * from t where id=8 for update;
commit;
begin;
insert into t values(4);
insert into t values(5);
insert into t values(6);
insert into t values(11);
insert into t values(12);
rollback;

drop table if exists t;
create table t(id int,key idx_a(id))engine=innodb;
insert into t values(1),(3),(5),(8),(11);
select * from t;

分析:
因为innoDB对于行的查询都是采用了next-key lock的算法,锁定的不是单个值,而是一个范围。上面索引值有(1,3,5,8,11),其记录的gap区间如下:是一个左开右闭的空间(原因是默认主键的有序自增的特性,结合后面的例子说明)(-∞,1],(1,3],(3,5],(5,8],(8,11],(11,+∞)
innoDB存储引擎还会对辅助索引下一个键值加上gap lock。

实例二、

t1t2
begin;
delete from t where id=8;
commit;
begin;
insert into t(id,name) values(6,‘f’);
insert into t(id,name) values(5,‘e1’);
insert into t(id,name) values(8,‘gg’);
insert into t(id,name) values(10,‘p’);
insert into t(id,name) values(11,‘iz’);
insert into t(id,name) values(5,‘cz’);

分析:因为会话1已经对id=8的记录加了一个X锁,由于是RR隔离级别,innodb要防止幻读需要加gap锁:即id=5(8的左边),id=11(8的右边)之间需要加间隙锁(gap)。这样[5,e]和[8,g],[8,g]和[11,j]之间的数据都要被锁。上面测试已经验证了这一点,根据索引的有序性,数据按照主键name排序,后面写入的[5,cz] ([5,e]的左边)和[11,ja] ([11,j]的右边)不属于上面的范围从而可以写入。

实例三、

t1t2
begin;
select * from t where id=8 for update;
commit;
begin;
insert into t values(7);
insert into t values(9);
rollback;

drop table if exists t;
create table t(id int primary key)engine=innodb;
insert into t values(1),(3),(5),(8),(11);
select * from t;

分析:
因为innoDB对于行的查询都是采用了next-key lock的算法,锁定的不是单个值,而是一个范围,按照这个方法和第一个测试结果一样。但是,当查询的索引含有唯一属性的时候,next-key lock会进行优化,将其降级为record lock,即仅锁住索引本身,不是范围。

实例四、

t1t2
begin;
select * from t where id=15 for update;
commit;
begin;
insert into t(id,name) values(10,‘k’);
insert into t(id,name) values(12,‘k’);
rollback;

drop table if exists t;
create table t(id int,name varchar(10),primary key(id))engine=innodb;
insert into t values(1,‘a’),(3,‘c’),(5,‘e’),(8,‘g’),(11,‘j’);
select * from t;

分析:
通过主键或者唯一索引来锁定不存在的值,也会产生gap锁定。

5、死锁

show engine innodb status;

duplicate key error 引发的死锁

drop table if exists t;
create table t(id int(10) unsigned not null ,
name varchar(20) not null default ‘’,
age int(11) not null default ‘0’ ,
stage int(11) not null default ‘0’ ,
primary key(id),
unique key udx_name(name),
key idx_stage(stage))engine=innodb;

insert into t(id,name,age,stage) values(1,‘yst’,11,8),(2,‘dxj’,7,4),(3,‘lb’,13,7),(4,‘zsq’,5,7),(5,‘lxr’,13,4);
select * from t;
select * from information_schema.innodb_locks;

t1t2t3
begin;
insert into t values(6,‘test’,12,3);
rollback;
begin;
insert into t values(6,‘test’,12,3);
OK
begin;
insert into t values(6,‘test’,12,3);
ERROR

死锁成因
事务t1成功插入记录,并获得索引id=6上的排他记录锁(lock_x)
紧接着事务t2、t3也开始插入记录,请求排他插入意向锁(lock_insert_intention);但由于发生重复唯一键冲突,各自请求的排他记录锁(lock_x)转成共享记录锁(lock_s)

t1回滚释放索引id=6上的排他记录锁(lock_x),t2和t3都要请求索引id=6上的排他记录锁(lock_x)。
由于x锁和s锁互斥,t2和t3都等待对方释放s锁。
于是,死锁便产生了。

如果此场景下,只有两个事务t1与t2或者t1与t3,则不会引发如上死锁情况发生。

gap与insert intention冲突引发的死锁

drop table if exists t;
create table t(a int(11) not null, b int(11) default null,primary key(a),key idx_b(b))engine=innodb default charset=utf8;
insert into t(a,b) values(1,2),(2,3),(3,4),(11,55);
select * from t;

t1t2
begin;
select * from t where b=6 for update;
insert into t values(4,5);
commit;
begin;
select * from t where b=8 for update;
insert into t values(4,5);
commit;

死锁成因
事务t1执行查询语句,在索引b=6上加排他next-key锁(lock_x),会锁住idx_b索引范围(4,22)。
事务t2执行查询语句,在索引b=8上加排他next-key锁(lock_x),会锁住idx_b索引范围(4,22)。
由于请求的gap与已持有的gap是兼容的,因此,事务t2在idx_b索引范围(4,22)也能加锁成功。

事务t1执行插入语句,会先加他insert intention锁。由于请求的insert intention锁与已有的gap锁不兼容,则事务t1等待t2释放gap锁。
事务t2执行插入语句,也会等待t1释放gap锁。于是,死锁便产生了。

6、程序应用

这里写图片描述
这里写图片描述

这篇关于mysql锁机制要览+示例讲解的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/419441

相关文章

详解MySQL中DISTINCT去重的核心注意事项

《详解MySQL中DISTINCT去重的核心注意事项》为了实现查询不重复的数据,MySQL提供了DISTINCT关键字,它的主要作用就是对数据表中一个或多个字段重复的数据进行过滤,只返回其中的一条数据... 目录DISTINCT 六大注意事项1. 作用范围:所有 SELECT 字段2. NULL 值的特殊处

MySQL 用户创建与授权最佳实践

《MySQL用户创建与授权最佳实践》在MySQL中,用户管理和权限控制是数据库安全的重要组成部分,下面详细介绍如何在MySQL中创建用户并授予适当的权限,感兴趣的朋友跟随小编一起看看吧... 目录mysql 用户创建与授权详解一、MySQL用户管理基础1. 用户账户组成2. 查看现有用户二、创建用户1. 基

MySQL 打开binlog日志的方法及注意事项

《MySQL打开binlog日志的方法及注意事项》本文给大家介绍MySQL打开binlog日志的方法及注意事项,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要... 目录一、默认状态二、如何检查 binlog 状态三、如何开启 binlog3.1 临时开启(重启后失效)

Python如何去除图片干扰代码示例

《Python如何去除图片干扰代码示例》图片降噪是一个广泛应用于图像处理的技术,可以提高图像质量和相关应用的效果,:本文主要介绍Python如何去除图片干扰的相关资料,文中通过代码介绍的非常详细,... 目录一、噪声去除1. 高斯噪声(像素值正态分布扰动)2. 椒盐噪声(随机黑白像素点)3. 复杂噪声(如伪

SQL BETWEEN 语句的基本用法详解

《SQLBETWEEN语句的基本用法详解》SQLBETWEEN语句是一个用于在SQL查询中指定查询条件的重要工具,它允许用户指定一个范围,用于筛选符合特定条件的记录,本文将详细介绍BETWEEN语... 目录概述BETWEEN 语句的基本用法BETWEEN 语句的示例示例 1:查询年龄在 20 到 30 岁

MySQL DQL从入门到精通

《MySQLDQL从入门到精通》通过DQL,我们可以从数据库中检索出所需的数据,进行各种复杂的数据分析和处理,本文将深入探讨MySQLDQL的各个方面,帮助你全面掌握这一重要技能,感兴趣的朋友跟随小... 目录一、DQL 基础:SELECT 语句入门二、数据过滤:WHERE 子句的使用三、结果排序:ORDE

Java Spring ApplicationEvent 代码示例解析

《JavaSpringApplicationEvent代码示例解析》本文解析了Spring事件机制,涵盖核心概念(发布-订阅/观察者模式)、代码实现(事件定义、发布、监听)及高级应用(异步处理、... 目录一、Spring 事件机制核心概念1. 事件驱动架构模型2. 核心组件二、代码示例解析1. 事件定义

python使用库爬取m3u8文件的示例

《python使用库爬取m3u8文件的示例》本文主要介绍了python使用库爬取m3u8文件的示例,可以使用requests、m3u8、ffmpeg等库,实现获取、解析、下载视频片段并合并等步骤,具有... 目录一、准备工作二、获取m3u8文件内容三、解析m3u8文件四、下载视频片段五、合并视频片段六、错误

HTML5 getUserMedia API网页录音实现指南示例小结

《HTML5getUserMediaAPI网页录音实现指南示例小结》本教程将指导你如何利用这一API,结合WebAudioAPI,实现网页录音功能,从获取音频流到处理和保存录音,整个过程将逐步... 目录1. html5 getUserMedia API简介1.1 API概念与历史1.2 功能与优势1.3

spring中的ImportSelector接口示例详解

《spring中的ImportSelector接口示例详解》Spring的ImportSelector接口用于动态选择配置类,实现条件化和模块化配置,关键方法selectImports根据注解信息返回... 目录一、核心作用二、关键方法三、扩展功能四、使用示例五、工作原理六、应用场景七、自定义实现Impor