埃尔米特插值(hermite 插值) C++

2023-11-23 16:15
文章标签 c++ 插值 hermite 埃尔米

本文主要是介绍埃尔米特插值(hermite 插值) C++,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

埃尔米特插值 原理

在这里插入图片描述
在这里插入图片描述

#pragma once
#include <vector>
#include <functional>
/*埃尔米特插值*/
struct InterpolationPoint {double x; // 插值点的横坐标double y; // 插值点的纵坐标double derivative; // 插值点的导数值// 默认构造函数InterpolationPoint() : x(0.0), y(0.0), derivative(0.0) {}// 带参数的构造函数InterpolationPoint(double x_val, double y_val, double derivative_val) : x(x_val), y(y_val), derivative(derivative_val) {}// 拷贝构造函数InterpolationPoint(const InterpolationPoint& other) : x(other.x), y(other.y), derivative(other.derivative) {}// 移动构造函数InterpolationPoint(InterpolationPoint&& other) noexcept : x(other.x), y(other.y), derivative(other.derivative) {other.x = 0.0;other.y = 0.0;other.derivative = 0.0;}// Copy assignment operatorInterpolationPoint& operator=(const InterpolationPoint& other) {if (this != &other) {x = other.x;y = other.y;derivative = other.derivative;}return *this;}// 设置插值点的值void set(double x_val, double y_val, double derivative_val) {x = x_val;y = y_val;derivative = derivative_val;}// 获取插值点的横坐标double get_x() const {return x;}// 获取插值点的纵坐标double get_y() const {return y;}// 获取插值点的导数值double get_derivative() const {return derivative;}
};class HermiteInterpolator {
public:HermiteInterpolator(const std::vector<InterpolationPoint>& points);HermiteInterpolator(int width, std::vector<int> &adjPoints);void setPoints(const std::vector<InterpolationPoint>& points);double interpolate(double x) ;private:// 返回连接两点的线段函数std::function<double(double)> getLineFunction( InterpolationPoint& p1,  InterpolationPoint& p2);private:std::vector<InterpolationPoint> points_;
};
#include "pch.h"
#include "HermiteInterpolator.h"
#include <fstream>
HermiteInterpolator::HermiteInterpolator(const std::vector<InterpolationPoint>& points) : points_(points)
{
}
HermiteInterpolator::HermiteInterpolator(int width, std::vector<int>& adjPoints)
{float step = width / adjPoints.size();for (int i = 0; i < adjPoints.size(); i++){InterpolationPoint point(step*i, adjPoints[i] , 0);points_.push_back(point);}
}
void HermiteInterpolator::setPoints(const std::vector<InterpolationPoint>& points)
{points_ = points;
}// 返回连接两点的线段函数
std::function<double(double)> HermiteInterpolator::getLineFunction( InterpolationPoint& p1,  InterpolationPoint& p2) {// 计算线段的斜率和截距double slope = (p2.y - p1.y) / (p2.x - p1.x);double intercept = p1.y - slope * p1.x;// 返回线段的lambda表达式return [slope, intercept](double x) {return slope * x + intercept;};
}
// 计算三次分段Hermite插值函数的值
double HermiteInterpolator::interpolate(double x)  {int y = 0;int n = points_.size();if (n < 3){// 获取线段函数std::function<double(double)> lineFunction = getLineFunction(points_[0], points_[1]);y= lineFunction(x);}else{for (int i = 0; i < n - 1; i++) {if (x >= points_[i].x && x <= points_[i + 1].x) {double h = points_[i + 1].x - points_[i].x;double t = (x - points_[i].x) / h;// (x-x_k)/(x_{k+1} - x_k)double tk = (x - points_[i + 1].x) / (-h); // (x - x_{ k + 1 }) / (x_k - x_{ k + 1 }) double y0 = (1 + 2 * t) * tk * tk;double y1 = (1 + 2 * tk) * t * t;double y2 = (x - points_[i].x) * tk * tk;double y3 = (x - points_[i + 1].x) * t * t;y= points_[i].y * y0 + points_[i + 1].y * y1 + points_[i].derivative * y2 + points_[i + 1].derivative * y3;}}}//ofstream  f;//f.open("D:\\work\\documentation\\HermiteInterpolator.txt", ios::app);//f <<x<<"," << y << endl;//f.close();return y; // 如果找不到对应的插值段,返回默认值
}

为了可视化效果可以把结果写到HermiteInterpolator.txt
画图python代码:

import matplotlib.pyplot as plt# 打开文本文件进行读取
with open('D:\\work\\documentation\\HermiteInterpolator.txt') as f:data = f.readlines()# 定义两个列表分别存储横坐标和纵坐标的数据    
x = []
y = [] # 遍历每一行
for i, line in enumerate(data):# 去除换行符if line:user_pwd_list = line.strip().split(',')# 横坐标是行号x.append(float(user_pwd_list[0]))# 纵坐标是数值数据y.append(float(user_pwd_list[1]))# 创建散点图    
plt.scatter(x, y)# 添加标题和轴标签
plt.title('Scatter Plot')  
plt.xlabel('Line')
plt.ylabel('Value')# 显示并保存图像
#plt.savefig('plot.png')
plt.show()

这篇关于埃尔米特插值(hermite 插值) C++的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/419157

相关文章

C++统计函数执行时间的最佳实践

《C++统计函数执行时间的最佳实践》在软件开发过程中,性能分析是优化程序的重要环节,了解函数的执行时间分布对于识别性能瓶颈至关重要,本文将分享一个C++函数执行时间统计工具,希望对大家有所帮助... 目录前言工具特性核心设计1. 数据结构设计2. 单例模式管理器3. RAII自动计时使用方法基本用法高级用法

深入解析C++ 中std::map内存管理

《深入解析C++中std::map内存管理》文章详解C++std::map内存管理,指出clear()仅删除元素可能不释放底层内存,建议用swap()与空map交换以彻底释放,针对指针类型需手动de... 目录1️、基本清空std::map2️、使用 swap 彻底释放内存3️、map 中存储指针类型的对象

C++ STL-string类底层实现过程

《C++STL-string类底层实现过程》本文实现了一个简易的string类,涵盖动态数组存储、深拷贝机制、迭代器支持、容量调整、字符串修改、运算符重载等功能,模拟标准string核心特性,重点强... 目录实现框架一、默认成员函数1.默认构造函数2.构造函数3.拷贝构造函数(重点)4.赋值运算符重载函数

C++ vector越界问题的完整解决方案

《C++vector越界问题的完整解决方案》在C++开发中,std::vector作为最常用的动态数组容器,其便捷性与性能优势使其成为处理可变长度数据的首选,然而,数组越界访问始终是威胁程序稳定性的... 目录引言一、vector越界的底层原理与危害1.1 越界访问的本质原因1.2 越界访问的实际危害二、基

c++日志库log4cplus快速入门小结

《c++日志库log4cplus快速入门小结》文章浏览阅读1.1w次,点赞9次,收藏44次。本文介绍Log4cplus,一种适用于C++的线程安全日志记录API,提供灵活的日志管理和配置控制。文章涵盖... 目录简介日志等级配置文件使用关于初始化使用示例总结参考资料简介log4j 用于Java,log4c

C++归并排序代码实现示例代码

《C++归并排序代码实现示例代码》归并排序将待排序数组分成两个子数组,分别对这两个子数组进行排序,然后将排序好的子数组合并,得到排序后的数组,:本文主要介绍C++归并排序代码实现的相关资料,需要的... 目录1 算法核心思想2 代码实现3 算法时间复杂度1 算法核心思想归并排序是一种高效的排序方式,需要用

C++11范围for初始化列表auto decltype详解

《C++11范围for初始化列表autodecltype详解》C++11引入auto类型推导、decltype类型推断、统一列表初始化、范围for循环及智能指针,提升代码简洁性、类型安全与资源管理效... 目录C++11新特性1. 自动类型推导auto1.1 基本语法2. decltype3. 列表初始化3

C++11右值引用与Lambda表达式的使用

《C++11右值引用与Lambda表达式的使用》C++11引入右值引用,实现移动语义提升性能,支持资源转移与完美转发;同时引入Lambda表达式,简化匿名函数定义,通过捕获列表和参数列表灵活处理变量... 目录C++11新特性右值引用和移动语义左值 / 右值常见的左值和右值移动语义移动构造函数移动复制运算符

C# $字符串插值的使用

《C#$字符串插值的使用》本文介绍了C#中的字符串插值功能,详细介绍了使用$符号的实现方式,文中通过示例代码介绍的非常详细,需要的朋友们下面随着小编来一起学习学习吧... 目录$ 字符使用方式创建内插字符串包含不同的数据类型控制内插表达式的格式控制内插表达式的对齐方式内插表达式中使用转义序列内插表达式中使用

C++中detach的作用、使用场景及注意事项

《C++中detach的作用、使用场景及注意事项》关于C++中的detach,它主要涉及多线程编程中的线程管理,理解detach的作用、使用场景以及注意事项,对于写出高效、安全的多线程程序至关重要,下... 目录一、什么是join()?它的作用是什么?类比一下:二、join()的作用总结三、join()怎么