python抢茅台_3、Python 数据分析-茅台酒业股票分析

2023-11-23 14:50

本文主要是介绍python抢茅台_3、Python 数据分析-茅台酒业股票分析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

需求:股票分析

使用tushare包获取某股票的历史行情数据。

tushare财经数据接口包,基于该模块可以获取任意股票的历史交易数据

pip install tushare

输出该股票所有收盘比开盘上涨3%以上的日期。

输出该股票所有开盘比前日收盘跌幅超过2%的日期。

假如我从2010年1月1日开始,每月第一个交易日买入1手股票,每年最后一个交易日卖出所有股票,到今天为止,我的收益如何?

import pandas as pd

import tushare as ts

df = ts.get_k_data(code='600519',start='1990')#600519茅台股票接口

1774189-20200629013507739-1579412029.png

#df的持久化存储

df.to_csv('maotai.csv')

#读取本地数据

df = pd.read_csv('./maotai.csv')

df.head(5)

1774189-20200629013526002-2109270365.png

#删除Unnamed: 0列

df.drop(labels='Unnamed: 0',axis=1,inplace=True)

1774189-20200629013547138-2014864125.png

#查看每一列的数据类型,哪些列中存在空值

df.info()

>>>

RangeIndex: 4406 entries, 0 to 4405

Data columns (total 7 columns):

date 4406 non-null object

open 4406 non-null float64

close 4406 non-null float64

high 4406 non-null float64

low 4406 non-null float64

volume 4406 non-null float64

code 4406 non-null int64

dtypes: float64(5), int64(1), object(1)

memory usage: 241.0+ KB

在观察数据的时候,如果发现时间数据为字符串类型则需要将其转换成时间序列类型

#装换成时间序列类型

df['date'] = pd.to_datetime(df['date'])

#将date列作为源数据的行索引

df.set_index('date',inplace=True)

1774189-20200629013604298-497264963.png

#将布尔值作为源数据的索引

df.loc[[True,False,True]]

1、输出该股票所有收盘比开盘上涨3%以上的日期

#(收盘-开盘)/开盘 > 0.03

(df['close'] - df['open']) / df['open'] > 0.03

#经验:在df的处理过程中,如果遇到了一组布尔值,下一步马上将布尔值作为源数据的行索引

#df.loc[(df['close'] - df['open']) / df['open'] > 0.03] #可以获取true对应行数据

df.loc[(df['close'] - df['open']) / df['open'] > 0.03].index

>>>

DatetimeIndex(['2001-08-27', '2001-08-28', '2001-09-10', '2001-12-21',

'2002-01-18', '2002-01-31', '2003-01-14', '2003-10-29',

'2004-01-05', '2004-01-14',

...

'2019-09-12', '2019-09-18', '2020-02-11', '2020-03-02',

'2020-03-05', '2020-03-10', '2020-04-02', '2020-04-22',

'2020-05-06', '2020-05-18'],

dtype='datetime64[ns]', name='date', length=311, freq=None)

2、输出该股票所有开盘比前日收盘跌幅超过2%的日期。

#(开盘-前日收盘)/前日收盘 < -0.02

#(开盘-前日收盘)/前日收盘 < -0.02

# (df['open'] - df['close'].shift(1)) / df['close'].shift(1) < -0.02

df.loc[(df['open'] - df['close'].shift(1)) / df['close'].shift(1) < -0.02].index

>>>

DatetimeIndex(['2001-09-12', '2002-06-26', '2002-12-13', '2004-07-01',

'2004-10-29', '2006-08-21', '2006-08-23', '2007-01-25',

'2007-02-01', '2007-02-06', '2007-03-19', '2007-05-21',

'2007-05-30', '2007-06-05', '2007-07-27', '2007-09-05',

'2007-09-10', '2008-03-13', '2008-03-17', '2008-03-25',

'2008-03-27', '2008-04-22', '2008-04-23', '2008-04-29',

'2008-05-13', '2008-06-10', '2008-06-13', '2008-06-24',

'2008-06-27', '2008-08-11', '2008-08-19', '2008-09-23',

'2008-10-10', '2008-10-15', '2008-10-16', '2008-10-20',

'2008-10-23', '2008-10-27', '2008-11-06', '2008-11-12',

'2008-11-20', '2008-11-21', '2008-12-02', '2009-02-27',

'2009-03-25', '2009-08-13', '2010-04-26', '2010-04-30',

'2011-08-05', '2012-03-27', '2012-08-10', '2012-11-22',

'2012-12-04', '2012-12-24', '2013-01-16', '2013-01-25',

'2013-09-02', '2014-04-25', '2015-01-19', '2015-05-25',

'2015-07-03', '2015-07-08', '2015-07-13', '2015-08-24',

'2015-09-02', '2015-09-15', '2017-11-17', '2018-02-06',

'2018-02-09', '2018-03-23', '2018-03-28', '2018-07-11',

'2018-10-11', '2018-10-24', '2018-10-25', '2018-10-29',

'2018-10-30', '2019-05-06', '2019-05-08', '2019-10-16',

'2020-01-02', '2020-02-03', '2020-03-13', '2020-03-23'],

dtype='datetime64[ns]', name='date', freq=None)

3、假如我从2010年1月1日开始,每月第一个交易日买入1手股票,每年最后一个交易日卖出所有股票,到今天为止,我的收益如何?

买入(开盘)

一个完整的年需要买入12手==1200只

卖出(收盘)

一个完整的年需要卖出1次股票,一次卖出1200只

特殊情况:2020年只可以买入股票无法卖出股票,没有及时卖出的股票的实际价值也要计算到总收益中

new_df = df['2010':'2020']

#买股票

#1.获取每一个完整的年对应每个月第一个交易日的行数据,行数据中可以提取出开盘价(买入股票的单价)

#实现的技术:数据的重新取样

#new_df.resample(rule='M') #将每一年中每一个对应的数据取出,M表示月

new_df.resample(rule='M').first() #将月份数据中的第一行数据取出

#买入股票花费的总钱数

cost_money = (new_df.resample(rule='M').first()['open']).sum() * 100

>>>

4490117.100000001

#统计出每年最后一天

#new_df.resample(rule='A')#将2010-2020年,每一年的数据取出,A表示年

new_df.resample(rule='A').last()[:-1] #每一年最后一个交易日对应的行数据

1774189-20200629013619161-1709700699.png

#卖出股票的钱数

recv_money = new_df.resample(rule='A').last()[:-1]['close'].sum() *1200

>>>

4391179.2

#剩余股票的价值也要计算到总收益中,剩余股票价值的单价可以用最近一天的收盘价来表示

last_price = new_df[-1:]['close'][0]

last_monry = 6*100*last_price

#总收益

last_monry + recv_money - cost_money

777068.0999999996

注意:上述对数据进行重新取样操作的前提,源数据中行索引为时间序列类型

总结

df的持久化存储

df.to_xxx():可以将df中的值进行任意形式的持久化存储

df的加载:

pd.read_xxx():可以将外部数据加载到df中

如何将字符串形式的时间值转换成时间序列类型

pd.to_datetime(df['date])

如何将某一列作为源数据的行索引

df.set_index('colName')

如何将Series进行整体的上下移动

Series.shift(1)

整数表示下移,负数表示上移

数据的重新取样

df.resample(rule='')

df.resample(rule='').last/first()

可以直接将布尔值作为df的行索引,就可以取出True对应的行数据。

这篇关于python抢茅台_3、Python 数据分析-茅台酒业股票分析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/418681

相关文章

慢sql提前分析预警和动态sql替换-Mybatis-SQL

《慢sql提前分析预警和动态sql替换-Mybatis-SQL》为防止慢SQL问题而开发的MyBatis组件,该组件能够在开发、测试阶段自动分析SQL语句,并在出现慢SQL问题时通过Ducc配置实现动... 目录背景解决思路开源方案调研设计方案详细设计使用方法1、引入依赖jar包2、配置组件XML3、核心配

Python开发文字版随机事件游戏的项目实例

《Python开发文字版随机事件游戏的项目实例》随机事件游戏是一种通过生成不可预测的事件来增强游戏体验的类型,在这篇博文中,我们将使用Python开发一款文字版随机事件游戏,通过这个项目,读者不仅能够... 目录项目概述2.1 游戏概念2.2 游戏特色2.3 目标玩家群体技术选择与环境准备3.1 开发环境3

Java NoClassDefFoundError运行时错误分析解决

《JavaNoClassDefFoundError运行时错误分析解决》在Java开发中,NoClassDefFoundError是一种常见的运行时错误,它通常表明Java虚拟机在尝试加载一个类时未能... 目录前言一、问题分析二、报错原因三、解决思路检查类路径配置检查依赖库检查类文件调试类加载器问题四、常见

Python中模块graphviz使用入门

《Python中模块graphviz使用入门》graphviz是一个用于创建和操作图形的Python库,本文主要介绍了Python中模块graphviz使用入门,具有一定的参考价值,感兴趣的可以了解一... 目录1.安装2. 基本用法2.1 输出图像格式2.2 图像style设置2.3 属性2.4 子图和聚

Python使用Matplotlib绘制3D曲面图详解

《Python使用Matplotlib绘制3D曲面图详解》:本文主要介绍Python使用Matplotlib绘制3D曲面图,在Python中,使用Matplotlib库绘制3D曲面图可以通过mpl... 目录准备工作绘制简单的 3D 曲面图绘制 3D 曲面图添加线框和透明度控制图形视角Matplotlib

一文教你Python如何快速精准抓取网页数据

《一文教你Python如何快速精准抓取网页数据》这篇文章主要为大家详细介绍了如何利用Python实现快速精准抓取网页数据,文中的示例代码简洁易懂,具有一定的借鉴价值,有需要的小伙伴可以了解下... 目录1. 准备工作2. 基础爬虫实现3. 高级功能扩展3.1 抓取文章详情3.2 保存数据到文件4. 完整示例

使用Python实现IP地址和端口状态检测与监控

《使用Python实现IP地址和端口状态检测与监控》在网络运维和服务器管理中,IP地址和端口的可用性监控是保障业务连续性的基础需求,本文将带你用Python从零打造一个高可用IP监控系统,感兴趣的小伙... 目录概述:为什么需要IP监控系统使用步骤说明1. 环境准备2. 系统部署3. 核心功能配置系统效果展

基于Python打造一个智能单词管理神器

《基于Python打造一个智能单词管理神器》这篇文章主要为大家详细介绍了如何使用Python打造一个智能单词管理神器,从查询到导出的一站式解决,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1. 项目概述:为什么需要这个工具2. 环境搭建与快速入门2.1 环境要求2.2 首次运行配置3. 核心功能使用指

Python实现微信自动锁定工具

《Python实现微信自动锁定工具》在数字化办公时代,微信已成为职场沟通的重要工具,但临时离开时忘记锁屏可能导致敏感信息泄露,下面我们就来看看如何使用Python打造一个微信自动锁定工具吧... 目录引言:当微信隐私遇到自动化守护效果展示核心功能全景图技术亮点深度解析1. 无操作检测引擎2. 微信路径智能获

Python中pywin32 常用窗口操作的实现

《Python中pywin32常用窗口操作的实现》本文主要介绍了Python中pywin32常用窗口操作的实现,pywin32主要的作用是供Python开发者快速调用WindowsAPI的一个... 目录获取窗口句柄获取最前端窗口句柄获取指定坐标处的窗口根据窗口的完整标题匹配获取句柄根据窗口的类别匹配获取句