python抢茅台_3、Python 数据分析-茅台酒业股票分析

2023-11-23 14:50

本文主要是介绍python抢茅台_3、Python 数据分析-茅台酒业股票分析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

需求:股票分析

使用tushare包获取某股票的历史行情数据。

tushare财经数据接口包,基于该模块可以获取任意股票的历史交易数据

pip install tushare

输出该股票所有收盘比开盘上涨3%以上的日期。

输出该股票所有开盘比前日收盘跌幅超过2%的日期。

假如我从2010年1月1日开始,每月第一个交易日买入1手股票,每年最后一个交易日卖出所有股票,到今天为止,我的收益如何?

import pandas as pd

import tushare as ts

df = ts.get_k_data(code='600519',start='1990')#600519茅台股票接口

1774189-20200629013507739-1579412029.png

#df的持久化存储

df.to_csv('maotai.csv')

#读取本地数据

df = pd.read_csv('./maotai.csv')

df.head(5)

1774189-20200629013526002-2109270365.png

#删除Unnamed: 0列

df.drop(labels='Unnamed: 0',axis=1,inplace=True)

1774189-20200629013547138-2014864125.png

#查看每一列的数据类型,哪些列中存在空值

df.info()

>>>

RangeIndex: 4406 entries, 0 to 4405

Data columns (total 7 columns):

date 4406 non-null object

open 4406 non-null float64

close 4406 non-null float64

high 4406 non-null float64

low 4406 non-null float64

volume 4406 non-null float64

code 4406 non-null int64

dtypes: float64(5), int64(1), object(1)

memory usage: 241.0+ KB

在观察数据的时候,如果发现时间数据为字符串类型则需要将其转换成时间序列类型

#装换成时间序列类型

df['date'] = pd.to_datetime(df['date'])

#将date列作为源数据的行索引

df.set_index('date',inplace=True)

1774189-20200629013604298-497264963.png

#将布尔值作为源数据的索引

df.loc[[True,False,True]]

1、输出该股票所有收盘比开盘上涨3%以上的日期

#(收盘-开盘)/开盘 > 0.03

(df['close'] - df['open']) / df['open'] > 0.03

#经验:在df的处理过程中,如果遇到了一组布尔值,下一步马上将布尔值作为源数据的行索引

#df.loc[(df['close'] - df['open']) / df['open'] > 0.03] #可以获取true对应行数据

df.loc[(df['close'] - df['open']) / df['open'] > 0.03].index

>>>

DatetimeIndex(['2001-08-27', '2001-08-28', '2001-09-10', '2001-12-21',

'2002-01-18', '2002-01-31', '2003-01-14', '2003-10-29',

'2004-01-05', '2004-01-14',

...

'2019-09-12', '2019-09-18', '2020-02-11', '2020-03-02',

'2020-03-05', '2020-03-10', '2020-04-02', '2020-04-22',

'2020-05-06', '2020-05-18'],

dtype='datetime64[ns]', name='date', length=311, freq=None)

2、输出该股票所有开盘比前日收盘跌幅超过2%的日期。

#(开盘-前日收盘)/前日收盘 < -0.02

#(开盘-前日收盘)/前日收盘 < -0.02

# (df['open'] - df['close'].shift(1)) / df['close'].shift(1) < -0.02

df.loc[(df['open'] - df['close'].shift(1)) / df['close'].shift(1) < -0.02].index

>>>

DatetimeIndex(['2001-09-12', '2002-06-26', '2002-12-13', '2004-07-01',

'2004-10-29', '2006-08-21', '2006-08-23', '2007-01-25',

'2007-02-01', '2007-02-06', '2007-03-19', '2007-05-21',

'2007-05-30', '2007-06-05', '2007-07-27', '2007-09-05',

'2007-09-10', '2008-03-13', '2008-03-17', '2008-03-25',

'2008-03-27', '2008-04-22', '2008-04-23', '2008-04-29',

'2008-05-13', '2008-06-10', '2008-06-13', '2008-06-24',

'2008-06-27', '2008-08-11', '2008-08-19', '2008-09-23',

'2008-10-10', '2008-10-15', '2008-10-16', '2008-10-20',

'2008-10-23', '2008-10-27', '2008-11-06', '2008-11-12',

'2008-11-20', '2008-11-21', '2008-12-02', '2009-02-27',

'2009-03-25', '2009-08-13', '2010-04-26', '2010-04-30',

'2011-08-05', '2012-03-27', '2012-08-10', '2012-11-22',

'2012-12-04', '2012-12-24', '2013-01-16', '2013-01-25',

'2013-09-02', '2014-04-25', '2015-01-19', '2015-05-25',

'2015-07-03', '2015-07-08', '2015-07-13', '2015-08-24',

'2015-09-02', '2015-09-15', '2017-11-17', '2018-02-06',

'2018-02-09', '2018-03-23', '2018-03-28', '2018-07-11',

'2018-10-11', '2018-10-24', '2018-10-25', '2018-10-29',

'2018-10-30', '2019-05-06', '2019-05-08', '2019-10-16',

'2020-01-02', '2020-02-03', '2020-03-13', '2020-03-23'],

dtype='datetime64[ns]', name='date', freq=None)

3、假如我从2010年1月1日开始,每月第一个交易日买入1手股票,每年最后一个交易日卖出所有股票,到今天为止,我的收益如何?

买入(开盘)

一个完整的年需要买入12手==1200只

卖出(收盘)

一个完整的年需要卖出1次股票,一次卖出1200只

特殊情况:2020年只可以买入股票无法卖出股票,没有及时卖出的股票的实际价值也要计算到总收益中

new_df = df['2010':'2020']

#买股票

#1.获取每一个完整的年对应每个月第一个交易日的行数据,行数据中可以提取出开盘价(买入股票的单价)

#实现的技术:数据的重新取样

#new_df.resample(rule='M') #将每一年中每一个对应的数据取出,M表示月

new_df.resample(rule='M').first() #将月份数据中的第一行数据取出

#买入股票花费的总钱数

cost_money = (new_df.resample(rule='M').first()['open']).sum() * 100

>>>

4490117.100000001

#统计出每年最后一天

#new_df.resample(rule='A')#将2010-2020年,每一年的数据取出,A表示年

new_df.resample(rule='A').last()[:-1] #每一年最后一个交易日对应的行数据

1774189-20200629013619161-1709700699.png

#卖出股票的钱数

recv_money = new_df.resample(rule='A').last()[:-1]['close'].sum() *1200

>>>

4391179.2

#剩余股票的价值也要计算到总收益中,剩余股票价值的单价可以用最近一天的收盘价来表示

last_price = new_df[-1:]['close'][0]

last_monry = 6*100*last_price

#总收益

last_monry + recv_money - cost_money

777068.0999999996

注意:上述对数据进行重新取样操作的前提,源数据中行索引为时间序列类型

总结

df的持久化存储

df.to_xxx():可以将df中的值进行任意形式的持久化存储

df的加载:

pd.read_xxx():可以将外部数据加载到df中

如何将字符串形式的时间值转换成时间序列类型

pd.to_datetime(df['date])

如何将某一列作为源数据的行索引

df.set_index('colName')

如何将Series进行整体的上下移动

Series.shift(1)

整数表示下移,负数表示上移

数据的重新取样

df.resample(rule='')

df.resample(rule='').last/first()

可以直接将布尔值作为df的行索引,就可以取出True对应的行数据。

这篇关于python抢茅台_3、Python 数据分析-茅台酒业股票分析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/418681

相关文章

基于Python开发Windows屏幕控制工具

《基于Python开发Windows屏幕控制工具》在数字化办公时代,屏幕管理已成为提升工作效率和保护眼睛健康的重要环节,本文将分享一个基于Python和PySide6开发的Windows屏幕控制工具,... 目录概述功能亮点界面展示实现步骤详解1. 环境准备2. 亮度控制模块3. 息屏功能实现4. 息屏时间

Python如何去除图片干扰代码示例

《Python如何去除图片干扰代码示例》图片降噪是一个广泛应用于图像处理的技术,可以提高图像质量和相关应用的效果,:本文主要介绍Python如何去除图片干扰的相关资料,文中通过代码介绍的非常详细,... 目录一、噪声去除1. 高斯噪声(像素值正态分布扰动)2. 椒盐噪声(随机黑白像素点)3. 复杂噪声(如伪

Python中图片与PDF识别文本(OCR)的全面指南

《Python中图片与PDF识别文本(OCR)的全面指南》在数据爆炸时代,80%的企业数据以非结构化形式存在,其中PDF和图像是最主要的载体,本文将深入探索Python中OCR技术如何将这些数字纸张转... 目录一、OCR技术核心原理二、python图像识别四大工具库1. Pytesseract - 经典O

基于Linux的ffmpeg python的关键帧抽取

《基于Linux的ffmpegpython的关键帧抽取》本文主要介绍了基于Linux的ffmpegpython的关键帧抽取,实现以按帧或时间间隔抽取关键帧,文中通过示例代码介绍的非常详细,对大家的学... 目录1.FFmpeg的环境配置1) 创建一个虚拟环境envjavascript2) ffmpeg-py

python使用库爬取m3u8文件的示例

《python使用库爬取m3u8文件的示例》本文主要介绍了python使用库爬取m3u8文件的示例,可以使用requests、m3u8、ffmpeg等库,实现获取、解析、下载视频片段并合并等步骤,具有... 目录一、准备工作二、获取m3u8文件内容三、解析m3u8文件四、下载视频片段五、合并视频片段六、错误

Python中提取文件名扩展名的多种方法实现

《Python中提取文件名扩展名的多种方法实现》在Python编程中,经常会遇到需要从文件名中提取扩展名的场景,Python提供了多种方法来实现这一功能,不同方法适用于不同的场景和需求,包括os.pa... 目录技术背景实现步骤方法一:使用os.path.splitext方法二:使用pathlib模块方法三

Python打印对象所有属性和值的方法小结

《Python打印对象所有属性和值的方法小结》在Python开发过程中,调试代码时经常需要查看对象的当前状态,也就是对象的所有属性和对应的值,然而,Python并没有像PHP的print_r那样直接提... 目录python中打印对象所有属性和值的方法实现步骤1. 使用vars()和pprint()2. 使

使用Python和OpenCV库实现实时颜色识别系统

《使用Python和OpenCV库实现实时颜色识别系统》:本文主要介绍使用Python和OpenCV库实现的实时颜色识别系统,这个系统能够通过摄像头捕捉视频流,并在视频中指定区域内识别主要颜色(红... 目录一、引言二、系统概述三、代码解析1. 导入库2. 颜色识别函数3. 主程序循环四、HSV色彩空间详解

一文深入详解Python的secrets模块

《一文深入详解Python的secrets模块》在构建涉及用户身份认证、权限管理、加密通信等系统时,开发者最不能忽视的一个问题就是“安全性”,Python在3.6版本中引入了专门面向安全用途的secr... 目录引言一、背景与动机:为什么需要 secrets 模块?二、secrets 模块的核心功能1. 基

python常见环境管理工具超全解析

《python常见环境管理工具超全解析》在Python开发中,管理多个项目及其依赖项通常是一个挑战,下面:本文主要介绍python常见环境管理工具的相关资料,文中通过代码介绍的非常详细,需要的朋友... 目录1. conda2. pip3. uvuv 工具自动创建和管理环境的特点4. setup.py5.