如何成为一名成功的“炼丹师”——DL训练技巧

2023-11-23 05:59

本文主要是介绍如何成为一名成功的“炼丹师”——DL训练技巧,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

关注并星标

从此不迷路

计算机视觉研究院

48b35af3e40eaae8dee03345597f74d4.gif

、.8ef507bdbca027cfb961af97990f86be.gif

f2ad71eca56908560332f8070208ea33.png

学习群|扫码在主页获取加入方式


今天给大家讲讲DNN(深度神经网络)在训练过程中遇到的一些问题,然后我们应该怎么去注意它,并学会怎么去训练它。

1、数据集的准备:

必须要保证大量、高质量且带有准确标签的数据,没有该条件的数据,训练学习很困难的(但是最近我看了以为作者写的一篇文章,说明不一定需要大量数据集,也可以训练的很好,有空和大家来分享其思想---很厉害的想法);

2、数据预处理:

这个不多说,就是0均值和1方差化,其实还有很多方法;

3、Minibatch:

这个有时候还要根据你的硬件设备而定,一般建议用128,8这组,但是128,1也很好,只是效率会非常慢,注意的是:千万不要用过大的数值,否则很容易过拟合;

4、梯度归一化:

其实就是计算出来梯度之后,要除以Minibatch的数量,这个可以通过阅读源码得知(我之前有写过SGD);

5、学习率:

①  一般都会有默认的学习率,但是刚开始还是用一般的去学习,然后逐渐的减小它;

②  一个建议值是0.1,适用于很多NN的问题,一般倾向于小一点;但是如果对于的大数据,何凯明老师也说过,要把学习率调到很小,他说0.00001都不为过(如果记得不错,应该是这么说的);

③  一个对于调度学习率的建议:如果在验证集上性能不再增加就让学习率除以2或者5,然后继续,学习率会一直变得很小,到最后就可以停止训练了;

④  很多人用的一个设计学习率的原则就是监测一个比率(每次更新梯度的norm除以当前weightnorm),如果这个比率在10e-3附近,且小于这个值,学习会很慢,如果大于这个值,那么学习很不稳定,由此会带来学习失败。

6、验证集的使用:

使用验证集,可以知道什么时候开始降低学习率和什么时候停止训练;

7、weight初始化:

①  如果你不想繁琐的话,直接用0.02*randn(num_params)来初始化,当然别的值也可以去尝试;

②  如果上面那个建议不太好使,那么就依次初始化每一个weight矩阵用init_scale / sqrt(layer_width) * randninit_scale可以被设置为0.1或者1

③  初始化参数对结果的影响至关重要,要引起重视;

④  在深度网络中,随机初始化权重,使用SGD的话一般处理的都不好,这是因为初始化的权重太小了。这种情况下对于浅层网络有效,但是当足够深的时候就不行,因为weight更新的时候,是靠很多weight相乘的,越乘越小,类似梯度消失的意思。

8、RNN&&LSTM(这方面没有深入了解,借用别人的意思):

如果训练RNN或者LSTM,务必保证gradientnorm被约束在15或者5(前提还是要先归一化gradient),这一点在RNNLSTM中很重要;

9、梯度检查:

检查下梯度,如果是你自己计算的梯度;如果使用LSTM来解决长时依赖的问题,记得初始化bias的时候要大一点;

10、数据增广:

尽可能想办法多的扩增训练数据,如果使用的是图像数据,不妨对图像做一点扭转,剪切,分割等操作来扩充数据训练集合;

11、dropout:(先空着,下次我要单独详细讲解Dropout)

12、评价结果:

评价最终结果的时候,多做几次,然后平均一下他们的结果。

补充:


1、选择优化算法  

传统的随机梯度下降算法虽然适用很广,但并不高效,最近出现很多更灵活的优化算法,例如Adagrad、RMSProp等,可在迭代优化的过程中自适应的调节学习速率等超参数,效果更佳;

2、参数设置技巧  

无论是多核CPU还是GPU加速,内存管理仍然以字节为基本单元做硬件优化,因此将参数设定为2的指数倍,如64,128,512,1024等,将有效提高矩阵分片、张量计算等操作的硬件处理效率;

3、正则优化  

除了在神经网络单元上添加传统的L1/L2正则项外,Dropout更经常在深度神经网络应用来避免模型的过拟合。初始默认的0.5的丢弃率是保守的选择,如果模型不是很复杂,设置为0.2就可以;

4、其他方法 

除了上述训练调优的方法外,还有其他一些常用方法,包括:使用mini-batch learning方法、迁移训练学习、打乱训练集顺序、对比训练误差和测试误差调节迭代次数、日志可视化观察等等。

© THE END 

转载请联系本公众号获得授权

800fa80ae523c843b92afcba0fd2472b.gif

计算机视觉研究院学习群等你加入!

计算机视觉研究院主要涉及深度学习领域,主要致力于人脸检测、人脸识别,多目标检测、目标跟踪、图像分割等研究方向。研究院接下来会不断分享最新的论文算法新框架,我们这次改革不同点就是,我们要着重”研究“。之后我们会针对相应领域分享实践过程,让大家真正体会摆脱理论的真实场景,培养爱动手编程爱动脑思考的习惯!

10713a085171f32cdff3560eda37f0c2.png

扫码关注

计算机视觉研究院

公众号ID|ComputerVisionGzq

学习群|扫码在主页获取加入方式

这篇关于如何成为一名成功的“炼丹师”——DL训练技巧的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/415872

相关文章

游戏闪退弹窗提示找不到storm.dll文件怎么办? Stormdll文件损坏修复技巧

《游戏闪退弹窗提示找不到storm.dll文件怎么办?Stormdll文件损坏修复技巧》DLL文件丢失或损坏会导致软件无法正常运行,例如我们在电脑上运行软件或游戏时会得到以下提示:storm.dll... 很多玩家在打开游戏时,突然弹出“找不到storm.dll文件”的提示框,随后游戏直接闪退,这通常是由于

MySQL 多列 IN 查询之语法、性能与实战技巧(最新整理)

《MySQL多列IN查询之语法、性能与实战技巧(最新整理)》本文详解MySQL多列IN查询,对比传统OR写法,强调其简洁高效,适合批量匹配复合键,通过联合索引、分批次优化提升性能,兼容多种数据库... 目录一、基础语法:多列 IN 的两种写法1. 直接值列表2. 子查询二、对比传统 OR 的写法三、性能分析

Python使用vllm处理多模态数据的预处理技巧

《Python使用vllm处理多模态数据的预处理技巧》本文深入探讨了在Python环境下使用vLLM处理多模态数据的预处理技巧,我们将从基础概念出发,详细讲解文本、图像、音频等多模态数据的预处理方法,... 目录1. 背景介绍1.1 目的和范围1.2 预期读者1.3 文档结构概述1.4 术语表1.4.1 核

Java中的雪花算法Snowflake解析与实践技巧

《Java中的雪花算法Snowflake解析与实践技巧》本文解析了雪花算法的原理、Java实现及生产实践,涵盖ID结构、位运算技巧、时钟回拨处理、WorkerId分配等关键点,并探讨了百度UidGen... 目录一、雪花算法核心原理1.1 算法起源1.2 ID结构详解1.3 核心特性二、Java实现解析2.

深度解析Python装饰器常见用法与进阶技巧

《深度解析Python装饰器常见用法与进阶技巧》Python装饰器(Decorator)是提升代码可读性与复用性的强大工具,本文将深入解析Python装饰器的原理,常见用法,进阶技巧与最佳实践,希望可... 目录装饰器的基本原理函数装饰器的常见用法带参数的装饰器类装饰器与方法装饰器装饰器的嵌套与组合进阶技巧

Go语言代码格式化的技巧分享

《Go语言代码格式化的技巧分享》在Go语言的开发过程中,代码格式化是一个看似细微却至关重要的环节,良好的代码格式化不仅能提升代码的可读性,还能促进团队协作,减少因代码风格差异引发的问题,Go在代码格式... 目录一、Go 语言代码格式化的重要性二、Go 语言代码格式化工具:gofmt 与 go fmt(一)

如何在Mac上彻底删除Edge账户? 手动卸载Edge浏览器并清理残留文件技巧

《如何在Mac上彻底删除Edge账户?手动卸载Edge浏览器并清理残留文件技巧》Mac上的Edge账户里存了不少网站密码和个人信息,结果同事一不小心打开了,简直尴尬到爆炸,想要卸载edge浏览器并清... 如果你遇到 Microsoft Edge 浏览器运行迟缓、频繁崩溃或网页加载异常等问题,可以尝试多种方

qt5cored.dll报错怎么解决? 电脑qt5cored.dll文件丢失修复技巧

《qt5cored.dll报错怎么解决?电脑qt5cored.dll文件丢失修复技巧》在进行软件安装或运行程序时,有时会遇到由于找不到qt5core.dll,无法继续执行代码,这个问题可能是由于该文... 遇到qt5cored.dll文件错误时,可能会导致基于 Qt 开发的应用程序无法正常运行或启动。这种错

mtu设置多少网速最快? 路由器MTU设置最佳网速的技巧

《mtu设置多少网速最快?路由器MTU设置最佳网速的技巧》mtu设置多少网速最快?想要通过设置路由器mtu获得最佳网速,该怎么设置呢?下面我们就来看看路由器MTU设置最佳网速的技巧... 答:1500 MTU值指的是在网络传输中数据包的最大值,合理的设置MTU 值可以让网络更快!mtu设置可以优化不同的网

MySQL JSON 查询中的对象与数组技巧及查询示例

《MySQLJSON查询中的对象与数组技巧及查询示例》MySQL中JSON对象和JSON数组查询的详细介绍及带有WHERE条件的查询示例,本文给大家介绍的非常详细,mysqljson查询示例相关知... 目录jsON 对象查询1. JSON_CONTAINS2. JSON_EXTRACT3. JSON_TA