基础入门:“炼丹师”——深度学习训练技巧

2023-11-23 05:59

本文主要是介绍基础入门:“炼丹师”——深度学习训练技巧,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

关注并星标

从此不迷路

计算机视觉研究院

de9b3d0bd928e1a44d4531611f4e94f5.gif

公众号IDComputerVisionGzq

学习群扫码在主页获取加入方式

计算机视觉研究院专栏

作者:Edison_G

深度学习已经成为解决许多具有挑战性的现实世界问题的方法。对目标检测,语音识别和语言翻译来说,这是迄今为止表现最好的方法。许多人将深度神经网络(DNNs)视为神奇的黑盒子,我们放进去一堆数据,出来的就是我们的解决方案!事实上,事情没那么简单。

在设计和应用DNN到一个特定的问题上可能会遇到很多挑战。为了达到现实世界应用所需的性能标准,对数据准备,网络设计,训练和推断等各个阶段的正确设计和执行至关重要。

今天给大家讲讲DNN(深度神经网络)在训练过程中遇到的一些问题,然后我们应该怎么去注意它,并学会怎么去训练它。

1、数据集的准备:

必须要保证大量、高质量且带有准确标签的数据,没有该条件的数据,训练学习很困难的(但是最近我看了以为作者写的一篇文章,说明不一定需要大量数据集,也可以训练的很好,有空和大家来分享其思想---很厉害的想法);

2、数据预处理:

这个不多说,就是0均值和1方差化,其实还有很多方法;

3、Minibatch:

这个有时候还要根据你的硬件设备而定,一般建议用128,8这组,但是128,1也很好,只是效率会非常慢,注意的是:千万不要用过大的数值,否则很容易过拟合;

4、梯度归一化:

其实就是计算出来梯度之后,要除以Minibatch的数量,这个可以通过阅读源码得知(我之前有写过SGD);

5、学习率:

①  一般都会有默认的学习率,但是刚开始还是用一般的去学习,然后逐渐的减小它;

②  一个建议值是0.1,适用于很多NN的问题,一般倾向于小一点;但是如果对于的大数据,何凯明老师也说过,要把学习率调到很小,他说0.00001都不为过(如果记得不错,应该是这么说的);

③  一个对于调度学习率的建议:如果在验证集上性能不再增加就让学习率除以2或者5,然后继续,学习率会一直变得很小,到最后就可以停止训练了;

④  很多人用的一个设计学习率的原则就是监测一个比率(每次更新梯度的norm除以当前weightnorm),如果这个比率在10e-3附近,且小于这个值,学习会很慢,如果大于这个值,那么学习很不稳定,由此会带来学习失败。

6、验证集的使用:

使用验证集,可以知道什么时候开始降低学习率和什么时候停止训练;

7、weight初始化:

①  如果你不想繁琐的话,直接用0.02*randn(num_params)来初始化,当然别的值也可以去尝试;

②  如果上面那个建议不太好使,那么就依次初始化每一个weight矩阵用init_scale / sqrt(layer_width) * randninit_scale可以被设置为0.1或者1

③  初始化参数对结果的影响至关重要,要引起重视;

④  在深度网络中,随机初始化权重,使用SGD的话一般处理的都不好,这是因为初始化的权重太小了。这种情况下对于浅层网络有效,但是当足够深的时候就不行,因为weight更新的时候,是靠很多weight相乘的,越乘越小,类似梯度消失的意思。

8、RNN&&LSTM(这方面没有深入了解,借用别人的意思):

如果训练RNN或者LSTM,务必保证gradient的norm被约束在15或者5(前提还是要先归一化gradient),这一点在RNNLSTM中很重要;

9、梯度检查:

检查下梯度,如果是你自己计算的梯度;如果使用LSTM来解决长时依赖的问题,记得初始化bias的时候要大一点;

10、数据增广:

尽可能想办法多的扩增训练数据,如果使用的是图像数据,不妨对图像做一点扭转,剪切,分割等操作来扩充数据训练集合;

11、dropout:(先空着,下次我要单独详细讲解Dropout)

12、评价结果:

评价最终结果的时候,多做几次,然后平均一下他们的结果。

补充:


1、选择优化算法  

传统的随机梯度下降算法虽然适用很广,但并不高效,最近出现很多更灵活的优化算法,例如Adagrad、RMSProp等,可在迭代优化的过程中自适应的调节学习速率等超参数,效果更佳;

2、参数设置技巧  

无论是多核CPU还是GPU加速,内存管理仍然以字节为基本单元做硬件优化,因此将参数设定为2的指数倍,如64,128,512,1024等,将有效提高矩阵分片、张量计算等操作的硬件处理效率;

3、正则优化  

除了在神经网络单元上添加传统的L1/L2正则项外,Dropout更经常在深度神经网络应用来避免模型的过拟合。初始默认的0.5的丢弃率是保守的选择,如果模型不是很复杂,设置为0.2就可以;

4、其他方法 

除了上述训练调优的方法外,还有其他一些常用方法,包括:使用mini-batch learning方法、迁移训练学习、打乱训练集顺序、对比训练误差和测试误差调节迭代次数、日志可视化观察等等。

© The Ending

转载请联系本公众号获得授权

1cb1cc1a531a02045627474f0c28dd9a.gif

计算机视觉研究院学习群等你加入!

计算机视觉研究院主要涉及深度学习领域,主要致力于人脸检测、人脸识别,多目标检测、目标跟踪、图像分割等研究方向。研究院接下来会不断分享最新的论文算法新框架,我们这次改革不同点就是,我们要着重”研究“。之后我们会针对相应领域分享实践过程,让大家真正体会摆脱理论的真实场景,培养爱动手编程爱动脑思考的习惯!

4bd0ba36b118ebed86186c06fc7c7706.png

扫码关注

计算机视觉研究院

公众号IDComputerVisionGzq

学习群扫码在主页获取加入方式

这篇关于基础入门:“炼丹师”——深度学习训练技巧的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/415870

相关文章

qt5cored.dll报错怎么解决? 电脑qt5cored.dll文件丢失修复技巧

《qt5cored.dll报错怎么解决?电脑qt5cored.dll文件丢失修复技巧》在进行软件安装或运行程序时,有时会遇到由于找不到qt5core.dll,无法继续执行代码,这个问题可能是由于该文... 遇到qt5cored.dll文件错误时,可能会导致基于 Qt 开发的应用程序无法正常运行或启动。这种错

mtu设置多少网速最快? 路由器MTU设置最佳网速的技巧

《mtu设置多少网速最快?路由器MTU设置最佳网速的技巧》mtu设置多少网速最快?想要通过设置路由器mtu获得最佳网速,该怎么设置呢?下面我们就来看看路由器MTU设置最佳网速的技巧... 答:1500 MTU值指的是在网络传输中数据包的最大值,合理的设置MTU 值可以让网络更快!mtu设置可以优化不同的网

从基础到进阶详解Pandas时间数据处理指南

《从基础到进阶详解Pandas时间数据处理指南》Pandas构建了完整的时间数据处理生态,核心由四个基础类构成,Timestamp,DatetimeIndex,Period和Timedelta,下面我... 目录1. 时间数据类型与基础操作1.1 核心时间对象体系1.2 时间数据生成技巧2. 时间索引与数据

MySQL JSON 查询中的对象与数组技巧及查询示例

《MySQLJSON查询中的对象与数组技巧及查询示例》MySQL中JSON对象和JSON数组查询的详细介绍及带有WHERE条件的查询示例,本文给大家介绍的非常详细,mysqljson查询示例相关知... 目录jsON 对象查询1. JSON_CONTAINS2. JSON_EXTRACT3. JSON_TA

Go学习记录之runtime包深入解析

《Go学习记录之runtime包深入解析》Go语言runtime包管理运行时环境,涵盖goroutine调度、内存分配、垃圾回收、类型信息等核心功能,:本文主要介绍Go学习记录之runtime包的... 目录前言:一、runtime包内容学习1、作用:① Goroutine和并发控制:② 垃圾回收:③ 栈和

安装centos8设置基础软件仓库时出错的解决方案

《安装centos8设置基础软件仓库时出错的解决方案》:本文主要介绍安装centos8设置基础软件仓库时出错的解决方案,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐... 目录安装Centos8设置基础软件仓库时出错版本 8版本 8.2.200android4版本 javas

Spring @RequestMapping 注解及使用技巧详解

《Spring@RequestMapping注解及使用技巧详解》@RequestMapping是SpringMVC中定义请求映射规则的核心注解,用于将HTTP请求映射到Controller处理方法... 目录一、核心作用二、关键参数说明三、快捷组合注解四、动态路径参数(@PathVariable)五、匹配请

Python中文件读取操作漏洞深度解析与防护指南

《Python中文件读取操作漏洞深度解析与防护指南》在Web应用开发中,文件操作是最基础也最危险的功能之一,这篇文章将全面剖析Python环境中常见的文件读取漏洞类型,成因及防护方案,感兴趣的小伙伴可... 目录引言一、静态资源处理中的路径穿越漏洞1.1 典型漏洞场景1.2 os.path.join()的陷

Android学习总结之Java和kotlin区别超详细分析

《Android学习总结之Java和kotlin区别超详细分析》Java和Kotlin都是用于Android开发的编程语言,它们各自具有独特的特点和优势,:本文主要介绍Android学习总结之Ja... 目录一、空安全机制真题 1:Kotlin 如何解决 Java 的 NullPointerExceptio

Linux基础命令@grep、wc、管道符的使用详解

《Linux基础命令@grep、wc、管道符的使用详解》:本文主要介绍Linux基础命令@grep、wc、管道符的使用,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐... 目录grep概念语法作用演示一演示二演示三,带选项 -nwc概念语法作用wc,不带选项-c,统计字节数-