《On the Shoulders of Giants: Incremental InfluenceMaximization in Evolving Social Networks》——解析

本文主要是介绍《On the Shoulders of Giants: Incremental InfluenceMaximization in Evolving Social Networks》——解析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

中文翻译——动态社会网络的增量式影响最大化算法

1.什么是影响力最大化

        在2003年Kempe 等人就给出了准确的影响力最大化的定义,同时也证明了影响力最大化问题是一个NP难问题。影响力最大化问题可以定义如下:给定一个G=(V,E)的网络图,其中V表示图中的节点,E表示图中的边,同时给定一个正整数k,影响力最大化问题就是要在给定的传播模型下,找到一组数量为k的种子节点集,使得在网络中的影响力传播规模最大化。用数学语言来描述也就是:找到一个集合满足如下这些条件的集合,S∈V同时丨S'丨=k,使Φ(S') = max(Φ(S))。     

        上面所描述的影响力最大化问题其实就是在给定节点数量k的前提下,去寻找相应数量的节点使得所找到的给定数量的节点集合能影响最多的节点。而对影响力最大化问题的描述除此之外,还有一种,那就是给定所要达到的影响力大小,以此为前提,去寻找能够产生相应影响力的最小的节点集合。

2.文章背景

         社交网站规模的飞速发展导致大规模社会网络的底层拓扑结构不断变化。当社会网络结构变化时,其中用户的影响力和影响范围也会随之改变,从而导致最有影响力用户发生变化。然而,已有影响最大化问题研究大多针对静态社会网络。当社会网络结构改变时,现有算法仅能在变化后的网络图中重新计算来定位新的最有影响力节点。        

         社会网络会不断有新用户加入,另外旧用户可能放弃使用。同时,社交网络中每个用户的好友关系也在通过认识新朋友或者放弃对别人的关注等方式不断发生改变。而且,真实社会网络的变化速度十分惊人;据报道目前世界最大的社交网站Facebook 的用户数量正在以每天 60 万的速度不断增长;同样国外知名微博网站Twitter 平均每秒钟有 11 个新用户注册使用。社会网络拓扑结构如此大量的变化必然会导致网络结构重组,节点影响范围变化。原来的最有影响力用户影响值可能下降,而之前并非最有影响力的用户可能影响力迅速增长,成为有力的竞争者。因此,当社会网络结构发变化时,最有影响力用户也会随之发生变化,所以有必要对最有影响用户进行重新选择,才能保证最大的影响范围。

3.主要工作和创新

(1)社会网络的增长基本上满足优先连接原则(Preferential Attachment,PA),即新增加的边更加趋向于同网络中度数大的节点连接,这会导致著名的“富者更富”现象。

(2)社会网络中最有影响力节点基本上是从度数大的节点中选出。

(3)设计了一种增量式影响最大化算法 IncInf。IncInf 算法的增量式设计不需要在变化后的网络图中重新计算所有节点的影响值,从而大大提高了计算效率和可扩展性,因此可以处理大规模的动态社会网络。

4.什么是动态社交网络

    动态社会网络被定义为随着时间推移的一组社会网络图快照ζ=(G0,G1, · · · ,Gt),其中 Gt = (Vt, Et, Pt) 是社会网络 ζ 在时间 t 时的网络结构快照。本算法使用∆Gt = (∆Vt, ∆Et, ∆Pt) 来代表网络图 Gt 从时间 t 到 t + 1 发生的拓扑结构变化。很明显,等式 Gt+1 = Gt ∪∆Gt 成立。     

给定: 时间为 t 时的社会网络 Gt,社会网络 Gt 所对应的大小为 K 的最有影响力节点集合 St,社会网络 Gt 所对应的拓扑结构变化 ∆Gt。     

目标: 高效选择出时间 t + 1 时社会网络图 Gt+1 所对应的大小为 K 的最有影响力节点集合 St+1 ⊂ Vt+1,从而使得集合 St+1 的最终影响范围最大。

5.社会网络增长速度分析

        节点和边是社会网络拓扑的基本组成元素和重要组成部分。通过分析社会网络中节点和边的数量随时间的变化情况来挖掘社会网络的增长速度。

6.优先连接规则 

 7.节点影响力同度数关系

8.设计IncInf算法 

 

9.所提公式

        使用最大影响路径来近似从节点u到v的影响扩散。在这里,将图G中从节点u到v的最大影响路径MIP(u,v,G)定义为具有最大影响路径影响从节点u到v的所有路径之间的概率,可以正式描述如下

        其中prob(p)表示路径p的传播概率,P(u,v,G)表示图G中从节点u到v的所有路径。对于给定路径p = {u1,u2,...,um },路径p的传播概率定义如下:

 10.addNode伪代码

11.剪枝策略设计 

         (1)在第 i 轮迭代中,如果图 Gt 中的最有影响力节点集合 Sti 的影响值变化量 deltaInf[Sti] 为正(即 Sti 的影响值增加),则选择影响值变化量大于deltaInf[Sti] 的节点作为备选节点。这种剪枝方式可以剪枝大量节点,有效减少计算量。

        (2)在第 i 轮迭代中,如果图 Gt 中的最有影响力节点集合 Sti 的影响值变化量 deltaInf[Sti] 为负,则除了条件1之外,备选节点还需要在度数排名或者影响值增加量方面具备显著优势。上述条件可以形式化描述为满足下面两个条件之一:(1)节点的度数排名在图 Gt+1 所有节点中位于前 5%。(2)节点的度数增长率在图 Gt+1 所有节点中排名前 5%。节点 vj 的度数增长率被定义为degreet+1(j)/degreet(j)

 12.IncInf算法设计

 13.本文数据集

 14.实验结果

 

 

 

 文章引用:[1] X  Liu,  X  Liao,  Li S , et al. On the Shoulders of Giants: Incremental Influence Maximization in Evolving Social Networks[J].  2015.

这篇关于《On the Shoulders of Giants: Incremental InfluenceMaximization in Evolving Social Networks》——解析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/415472

相关文章

Java中Redisson 的原理深度解析

《Java中Redisson的原理深度解析》Redisson是一个高性能的Redis客户端,它通过将Redis数据结构映射为Java对象和分布式对象,实现了在Java应用中方便地使用Redis,本文... 目录前言一、核心设计理念二、核心架构与通信层1. 基于 Netty 的异步非阻塞通信2. 编解码器三、

Java HashMap的底层实现原理深度解析

《JavaHashMap的底层实现原理深度解析》HashMap基于数组+链表+红黑树结构,通过哈希算法和扩容机制优化性能,负载因子与树化阈值平衡效率,是Java开发必备的高效数据结构,本文给大家介绍... 目录一、概述:HashMap的宏观结构二、核心数据结构解析1. 数组(桶数组)2. 链表节点(Node

Java 虚拟线程的创建与使用深度解析

《Java虚拟线程的创建与使用深度解析》虚拟线程是Java19中以预览特性形式引入,Java21起正式发布的轻量级线程,本文给大家介绍Java虚拟线程的创建与使用,感兴趣的朋友一起看看吧... 目录一、虚拟线程简介1.1 什么是虚拟线程?1.2 为什么需要虚拟线程?二、虚拟线程与平台线程对比代码对比示例:三

一文解析C#中的StringSplitOptions枚举

《一文解析C#中的StringSplitOptions枚举》StringSplitOptions是C#中的一个枚举类型,用于控制string.Split()方法分割字符串时的行为,核心作用是处理分割后... 目录C#的StringSplitOptions枚举1.StringSplitOptions枚举的常用

Python函数作用域与闭包举例深度解析

《Python函数作用域与闭包举例深度解析》Python函数的作用域规则和闭包是编程中的关键概念,它们决定了变量的访问和生命周期,:本文主要介绍Python函数作用域与闭包的相关资料,文中通过代码... 目录1. 基础作用域访问示例1:访问全局变量示例2:访问外层函数变量2. 闭包基础示例3:简单闭包示例4

MyBatis延迟加载与多级缓存全解析

《MyBatis延迟加载与多级缓存全解析》文章介绍MyBatis的延迟加载与多级缓存机制,延迟加载按需加载关联数据提升性能,一级缓存会话级默认开启,二级缓存工厂级支持跨会话共享,增删改操作会清空对应缓... 目录MyBATis延迟加载策略一对多示例一对多示例MyBatis框架的缓存一级缓存二级缓存MyBat

前端缓存策略的自解方案全解析

《前端缓存策略的自解方案全解析》缓存从来都是前端的一个痛点,很多前端搞不清楚缓存到底是何物,:本文主要介绍前端缓存的自解方案,文中通过代码介绍的非常详细,需要的朋友可以参考下... 目录一、为什么“清缓存”成了技术圈的梗二、先给缓存“把个脉”:浏览器到底缓存了谁?三、设计思路:把“发版”做成“自愈”四、代码

Java集合之Iterator迭代器实现代码解析

《Java集合之Iterator迭代器实现代码解析》迭代器Iterator是Java集合框架中的一个核心接口,位于java.util包下,它定义了一种标准的元素访问机制,为各种集合类型提供了一种统一的... 目录一、什么是Iterator二、Iterator的核心方法三、基本使用示例四、Iterator的工

Java JDK Validation 注解解析与使用方法验证

《JavaJDKValidation注解解析与使用方法验证》JakartaValidation提供了一种声明式、标准化的方式来验证Java对象,与框架无关,可以方便地集成到各种Java应用中,... 目录核心概念1. 主要注解基本约束注解其他常用注解2. 核心接口使用方法1. 基本使用添加依赖 (Maven

Java中的分布式系统开发基于 Zookeeper 与 Dubbo 的应用案例解析

《Java中的分布式系统开发基于Zookeeper与Dubbo的应用案例解析》本文将通过实际案例,带你走进基于Zookeeper与Dubbo的分布式系统开发,本文通过实例代码给大家介绍的非常详... 目录Java 中的分布式系统开发基于 Zookeeper 与 Dubbo 的应用案例一、分布式系统中的挑战二