Kaggle Jigsaw文本分类比赛方案总结

2023-11-23 04:50

本文主要是介绍Kaggle Jigsaw文本分类比赛方案总结,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Kaggle Jigsaw文本分类比赛方案总结

公众号: ChallengeHub

 

以下资源来自国内外选手分享的资源与方案,非常感谢他们的无私分享

1、比赛简介

一年一度的jigsaw有毒评论比赛开赛了,这次比赛与前两次举办的比赛不同,以往比赛都是英文训练集和测试集,但是这次的比赛确是训练集是前两次比赛的训练集的一个组合,验证集则是三种语言分别是es(西班牙语)、it(意大利语)、tr(土耳其语),测试集语言则是六种语言分别是es(西班牙语)、it(意大利语)、tr(土耳其语),ru(俄语)、pt(葡萄牙语)、fr(法语)。
--kaggle的Jigsaw多语言评论识别全球top15比赛心得分享

2、题目分析

这个比赛是一个文本分类的比赛,这个比赛目标是在给定文本中判断是否为恶意评论即01分类。训练数据还给了其他多列特征,包括一些敏感词特征还有一些其他指标评价的得分特征。测试集没有这些额外的特征只有文本数据。

通过比赛的评价指标可以看出来,这个比赛不仅仅是简单的01分类的比赛。这个比赛不仅关注分类正确,还关注于在预测结果中不是恶意评论中包含敏感词和是恶意评论中不包含敏感词两部分数据的得分。所以我们需要关注一下这两类的数据。可以考虑给这两类的数据赋予更高的权重,更方便模型能够准确的对这些数据预测正确。

文本统计特征如下:

词云展示


更多有趣的数据分析大家可以看下:
https://www.kaggle.com/nz0722/simple-eda-text-preprocessing-jigsaw

 

3、第三名方案解析

  • 代码仓库:https://github.com/sakami0000/kaggle_jigsaw

  • 方案帖子:https://www.kaggle.com/c/jigsaw-unintended-bias-in-toxicity-classification/discussion/97471#latest-582610

4、模型1 LstmGruNet

模型如其名,作者主要基于LSTM以及GRU两种序列循环神经网络搭建了文本分类模型

class LstmGruNet(nn.Module):def __init__(self, embedding_matrices, num_aux_targets, embedding_size=256, lstm_units=128,gru_units=128):super(LstmGruNet, self).__init__()self.embedding = ProjSumEmbedding(embedding_matrices, embedding_size)self.embedding_dropout = SpatialDropout(0.2)self.lstm = nn.LSTM(embedding_size, lstm_units, bidirectional=True, batch_first=True)self.gru = nn.GRU(lstm_units * 2, gru_units, bidirectional=True, batch_first=True)dense_hidden_units = gru_units * 4self.linear1 = nn.Linear(dense_hidden_units, dense_hidden_units)self.linear2 = nn.Linear(dense_hidden_units, dense_hidden_units)self.linear_out = nn.Linear(dense_hidden_units, 1)self.linear_aux_out = nn.Linear(dense_hidden_units, num_aux_targets)def forward(self, x):h_embedding = self.embedding(x)h_embedding = self.embedding_dropout(h_embedding)h1, _ = self.lstm(h_embedding)h2, _ = self.gru(h1)# global average poolingavg_pool = torch.mean(h2, 1)# global max poolingmax_pool, _ = torch.max(h2, 1)h_conc = torch.cat((max_pool, avg_pool), 1)h_conc_linear1 = F.relu(self.linear1(h_conc))h_conc_linear2 = F.relu(self.linear2(h_conc))hidden = h_conc + h_conc_linear1 + h_conc_linear2result = self.linear_out(hidden)aux_result = self.linear_aux_out(hidden)out = torch.cat([result, aux_result], 1)return out

5、模型2 LstmCapsuleAttenModel

该模型有递归神经网络、胶囊网络以及注意力神经网络搭建。

class LstmCapsuleAttenModel(nn.Module):def __init__(self, embedding_matrix, maxlen=200, lstm_hidden_size=128, gru_hidden_size=128,embedding_dropout=0.2, dropout1=0.2, dropout2=0.1, out_size=16,num_capsule=5, dim_capsule=5, caps_out=1, caps_dropout=0.3):super(LstmCapsuleAttenModel, self).__init__()self.embedding = nn.Embedding(*embedding_matrix.shape)self.embedding.weight = nn.Parameter(torch.tensor(embedding_matrix, dtype=torch.float32))self.embedding.weight.requires_grad = Falseself.embedding_dropout = nn.Dropout2d(embedding_dropout)self.lstm = nn.LSTM(embedding_matrix.shape[1], lstm_hidden_size, bidirectional=True, batch_first=True)self.gru = nn.GRU(lstm_hidden_size * 2, gru_hidden_size, bidirectional=True, batch_first=True)self.lstm_attention = Attention(lstm_hidden_size * 2, maxlen=maxlen)self.gru_attention = Attention(gru_hidden_size * 2, maxlen=maxlen)self.capsule = Capsule(input_dim_capsule=gru_hidden_size * 2,num_capsule=num_capsule,dim_capsule=dim_capsule)self.dropout_caps = nn.Dropout(caps_dropout)self.lin_caps = nn.Linear(num_capsule * dim_capsule, caps_out)self.norm = nn.LayerNorm(lstm_hidden_size * 2 + gru_hidden_size * 6 + caps_out)self.dropout1 = nn.Dropout(dropout1)self.linear = nn.Linear(lstm_hidden_size * 2 + gru_hidden_size * 6 + caps_out, out_size)self.dropout2 = nn.Dropout(dropout2)self.out = nn.Linear(out_size, 1)def apply_spatial_dropout(self, h_embedding):h_embedding = h_embedding.transpose(1, 2).unsqueeze(2)h_embedding = self.embedding_dropout(h_embedding).squeeze(2).transpose(1, 2)return h_embeddingdef forward(self, x):h_embedding = self.embedding(x)h_embedding = self.apply_spatial_dropout(h_embedding)h_lstm, _ = self.lstm(h_embedding)h_gru, _ = self.gru(h_lstm)h_lstm_atten = self.lstm_attention(h_lstm)h_gru_atten = self.gru_attention(h_gru)content3 = self.capsule(h_gru)batch_size = content3.size(0)content3 = content3.view(batch_size, -1)content3 = self.dropout_caps(content3)content3 = torch.relu(self.lin_caps(content3))avg_pool = torch.mean(h_gru, 1)max_pool, _ = torch.max(h_gru, 1)conc = torch.cat((h_lstm_atten, h_gru_atten, content3, avg_pool, max_pool), 1)conc = self.norm(conc)conc = self.dropout1(conc)conc = torch.relu(conc)conc = self.linear(conc)conc = self.dropout2(conc)out = self.out(conc)return out

6、模型3 LstmConvModel

该模型有LSTM和Convolutional Neural Network搭建

class LstmConvModel(nn.Module):def __init__(self, embedding_matrix, lstm_hidden_size=128, gru_hidden_size=128, n_channels=64,embedding_dropout=0.2, out_size=20, out_dropout=0.1):super(LstmConvModel, self).__init__()self.embedding = nn.Embedding(*embedding_matrix.shape)self.embedding.weight = nn.Parameter(torch.tensor(embedding_matrix, dtype=torch.float32))self.embedding.weight.requires_grad = Falseself.embedding_dropout = nn.Dropout2d(0.2)self.lstm = nn.LSTM(embedding_matrix.shape[1], lstm_hidden_size, bidirectional=True, batch_first=True)self.gru = nn.GRU(lstm_hidden_size * 2, gru_hidden_size, bidirectional=True, batch_first=True)self.conv = nn.Conv1d(gru_hidden_size * 2, n_channels, 3, padding=2)nn.init.xavier_uniform_(self.conv.weight)self.linear = nn.Linear(n_channels * 2, out_size)self.relu = nn.ReLU()self.dropout = nn.Dropout(out_dropout)self.out = nn.Linear(out_size, 1)def apply_spatial_dropout(self, h_embedding):h_embedding = h_embedding.transpose(1, 2).unsqueeze(2)h_embedding = self.embedding_dropout(h_embedding).squeeze(2).transpose(1, 2)return h_embeddingdef forward(self, x):h_embedding = self.embedding(x)h_embedding = self.apply_spatial_dropout(h_embedding)h_lstm, _ = self.lstm(h_embedding)h_gru, _ = self.gru(h_lstm)h_gru = h_gru.transpose(2, 1)conv = self.conv(h_gru)conv_avg_pool = torch.mean(conv, 2)conv_max_pool, _ = torch.max(conv, 2)conc = torch.cat((conv_avg_pool, conv_max_pool), 1)conc = self.relu(self.linear(conc))conc = self.dropout(conc)out = self.out(conc)return out

7、模型4 Bert&GPT2

from pytorch_pretrained_bert import GPT2Model
import torch
from torch import nnclass GPT2ClassificationHeadModel(GPT2Model):def __init__(self, config, clf_dropout=0.4, n_class=8):super(GPT2ClassificationHeadModel, self).__init__(config)self.transformer = GPT2Model(config)self.dropout = nn.Dropout(clf_dropout)self.linear = nn.Linear(config.n_embd * 3, n_class)nn.init.normal_(self.linear.weight, std=0.02)nn.init.normal_(self.linear.bias, 0)self.apply(self.init_weights)def forward(self, input_ids, position_ids=None, token_type_ids=None, lm_labels=None, past=None):hidden_states, presents = self.transformer(input_ids, position_ids, token_type_ids, past)avg_pool = torch.mean(hidden_states, 1)max_pool, _ = torch.max(hidden_states, 1)h_conc = torch.cat((avg_pool, max_pool, hidden_states[:, -1, :]), 1)logits = self.linear(self.dropout(h_conc))return logits

代码获取:
链接:https://pan.baidu.com/s/1JdAe2sWRyuNShVhFF0ZvGg
提取码:lm80
复制这段内容后打开百度网盘手机App,操作更方便哦

8、相关知识点

1 胶囊网络

Capsule Neural 相较于传统神经网络的区别在于,传统 Neuron 每一个 node 输出为一个激活后的具体数值,而经过 Capsule 输出后得到的则是一个向量,乍一看感觉好好输出个数字,为什么要麻麻烦烦输出一个向量。其实这关乎于一个重点就是神经网络状态的表征,输出向量可以更丰富的表达节点提取的特征,甚至也可以其他降低网络层参数数目的目的。因此对于同一个特征,原本 neuron 的时候我们可能需要多个 nodes 来识别,而现在我们只需要一个 vector,用 vector 中的不同维度来记录同一个特征的不同属性。
--慢学NLP / Capsule Net 胶囊网络


论文:Towards Scalable and Reliable Capsule Networks for Challenging NLP Applications
https://www.aclweb.org/anthology/P19-1150.pdf
代码:https://github.com/andyweizhao/NLP-Capsule

 

2 Spatial Dropout

SpatialDropout是Tompson等人在图像领域提出的一种dropout方法。普通的dropout会随机地将部分元素置零,而SpatialDropout会随机地将部分区域置零,该dropout方法在图像识别领域实践证明是有效的。
--Spatial Dropout

当咱们对该张量使用dropout技术时,你会发现普通的dropout会随机独立地将部分元素置零,而SpatialDropout1D会随机地对某个特定的纬度所有置零,以下图所示:

9、更多方案解析

1、kaggle的Jigsaw多语言评论识别全球top15比赛心得分享
https://zhuanlan.zhihu.com/p/338169840
2、kaggle Jigsaw Unintended Bias in Toxicity Classification 金牌rank15分享
https://xuanzebi.github.io/2019/07/20/JUBTC/

欢迎扫码关注ChallengeHub公众号
在这里插入图片描述
欢迎加入ChallengeHub学习交流群
在这里插入图片描述

这篇关于Kaggle Jigsaw文本分类比赛方案总结的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/415459

相关文章

Qt实现网络数据解析的方法总结

《Qt实现网络数据解析的方法总结》在Qt中解析网络数据通常涉及接收原始字节流,并将其转换为有意义的应用层数据,这篇文章为大家介绍了详细步骤和示例,感兴趣的小伙伴可以了解下... 目录1. 网络数据接收2. 缓冲区管理(处理粘包/拆包)3. 常见数据格式解析3.1 jsON解析3.2 XML解析3.3 自定义

Pandas使用AdaBoost进行分类的实现

《Pandas使用AdaBoost进行分类的实现》Pandas和AdaBoost分类算法,可以高效地进行数据预处理和分类任务,本文主要介绍了Pandas使用AdaBoost进行分类的实现,具有一定的参... 目录什么是 AdaBoost?使用 AdaBoost 的步骤安装必要的库步骤一:数据准备步骤二:模型

Java Response返回值的最佳处理方案

《JavaResponse返回值的最佳处理方案》在开发Web应用程序时,我们经常需要通过HTTP请求从服务器获取响应数据,这些数据可以是JSON、XML、甚至是文件,本篇文章将详细解析Java中处理... 目录摘要概述核心问题:关键技术点:源码解析示例 1:使用HttpURLConnection获取Resp

Python实现图片分割的多种方法总结

《Python实现图片分割的多种方法总结》图片分割是图像处理中的一个重要任务,它的目标是将图像划分为多个区域或者对象,本文为大家整理了一些常用的分割方法,大家可以根据需求自行选择... 目录1. 基于传统图像处理的分割方法(1) 使用固定阈值分割图片(2) 自适应阈值分割(3) 使用图像边缘检测分割(4)

Java实现优雅日期处理的方案详解

《Java实现优雅日期处理的方案详解》在我们的日常工作中,需要经常处理各种格式,各种类似的的日期或者时间,下面我们就来看看如何使用java处理这样的日期问题吧,感兴趣的小伙伴可以跟随小编一起学习一下... 目录前言一、日期的坑1.1 日期格式化陷阱1.2 时区转换二、优雅方案的进阶之路2.1 线程安全重构2

Windows Docker端口占用错误及解决方案总结

《WindowsDocker端口占用错误及解决方案总结》在Windows环境下使用Docker容器时,端口占用错误是开发和运维中常见且棘手的问题,本文将深入剖析该问题的成因,介绍如何通过查看端口分配... 目录引言Windows docker 端口占用错误及解决方案汇总端口冲突形成原因解析诊断当前端口情况解

C#TextBox设置提示文本方式(SetHintText)

《C#TextBox设置提示文本方式(SetHintText)》:本文主要介绍C#TextBox设置提示文本方式(SetHintText),具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑... 目录C#TextBox设置提示文本效果展示核心代码总结C#TextBox设置提示文本效果展示核心代

Java图片压缩三种高效压缩方案详细解析

《Java图片压缩三种高效压缩方案详细解析》图片压缩通常涉及减少图片的尺寸缩放、调整图片的质量(针对JPEG、PNG等)、使用特定的算法来减少图片的数据量等,:本文主要介绍Java图片压缩三种高效... 目录一、基于OpenCV的智能尺寸压缩技术亮点:适用场景:二、JPEG质量参数压缩关键技术:压缩效果对比

SpringBoot首笔交易慢问题排查与优化方案

《SpringBoot首笔交易慢问题排查与优化方案》在我们的微服务项目中,遇到这样的问题:应用启动后,第一笔交易响应耗时高达4、5秒,而后续请求均能在毫秒级完成,这不仅触发监控告警,也极大影响了用户体... 目录问题背景排查步骤1. 日志分析2. 性能工具定位优化方案:提前预热各种资源1. Flowable

Java进行文件格式校验的方案详解

《Java进行文件格式校验的方案详解》这篇文章主要为大家详细介绍了Java中进行文件格式校验的相关方案,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录一、背景异常现象原因排查用户的无心之过二、解决方案Magandroidic Number判断主流检测库对比Tika的使用区分zip