Kaggle Jigsaw文本分类比赛方案总结

2023-11-23 04:50

本文主要是介绍Kaggle Jigsaw文本分类比赛方案总结,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Kaggle Jigsaw文本分类比赛方案总结

公众号: ChallengeHub

 

以下资源来自国内外选手分享的资源与方案,非常感谢他们的无私分享

1、比赛简介

一年一度的jigsaw有毒评论比赛开赛了,这次比赛与前两次举办的比赛不同,以往比赛都是英文训练集和测试集,但是这次的比赛确是训练集是前两次比赛的训练集的一个组合,验证集则是三种语言分别是es(西班牙语)、it(意大利语)、tr(土耳其语),测试集语言则是六种语言分别是es(西班牙语)、it(意大利语)、tr(土耳其语),ru(俄语)、pt(葡萄牙语)、fr(法语)。
--kaggle的Jigsaw多语言评论识别全球top15比赛心得分享

2、题目分析

这个比赛是一个文本分类的比赛,这个比赛目标是在给定文本中判断是否为恶意评论即01分类。训练数据还给了其他多列特征,包括一些敏感词特征还有一些其他指标评价的得分特征。测试集没有这些额外的特征只有文本数据。

通过比赛的评价指标可以看出来,这个比赛不仅仅是简单的01分类的比赛。这个比赛不仅关注分类正确,还关注于在预测结果中不是恶意评论中包含敏感词和是恶意评论中不包含敏感词两部分数据的得分。所以我们需要关注一下这两类的数据。可以考虑给这两类的数据赋予更高的权重,更方便模型能够准确的对这些数据预测正确。

文本统计特征如下:

词云展示


更多有趣的数据分析大家可以看下:
https://www.kaggle.com/nz0722/simple-eda-text-preprocessing-jigsaw

 

3、第三名方案解析

  • 代码仓库:https://github.com/sakami0000/kaggle_jigsaw

  • 方案帖子:https://www.kaggle.com/c/jigsaw-unintended-bias-in-toxicity-classification/discussion/97471#latest-582610

4、模型1 LstmGruNet

模型如其名,作者主要基于LSTM以及GRU两种序列循环神经网络搭建了文本分类模型

class LstmGruNet(nn.Module):def __init__(self, embedding_matrices, num_aux_targets, embedding_size=256, lstm_units=128,gru_units=128):super(LstmGruNet, self).__init__()self.embedding = ProjSumEmbedding(embedding_matrices, embedding_size)self.embedding_dropout = SpatialDropout(0.2)self.lstm = nn.LSTM(embedding_size, lstm_units, bidirectional=True, batch_first=True)self.gru = nn.GRU(lstm_units * 2, gru_units, bidirectional=True, batch_first=True)dense_hidden_units = gru_units * 4self.linear1 = nn.Linear(dense_hidden_units, dense_hidden_units)self.linear2 = nn.Linear(dense_hidden_units, dense_hidden_units)self.linear_out = nn.Linear(dense_hidden_units, 1)self.linear_aux_out = nn.Linear(dense_hidden_units, num_aux_targets)def forward(self, x):h_embedding = self.embedding(x)h_embedding = self.embedding_dropout(h_embedding)h1, _ = self.lstm(h_embedding)h2, _ = self.gru(h1)# global average poolingavg_pool = torch.mean(h2, 1)# global max poolingmax_pool, _ = torch.max(h2, 1)h_conc = torch.cat((max_pool, avg_pool), 1)h_conc_linear1 = F.relu(self.linear1(h_conc))h_conc_linear2 = F.relu(self.linear2(h_conc))hidden = h_conc + h_conc_linear1 + h_conc_linear2result = self.linear_out(hidden)aux_result = self.linear_aux_out(hidden)out = torch.cat([result, aux_result], 1)return out

5、模型2 LstmCapsuleAttenModel

该模型有递归神经网络、胶囊网络以及注意力神经网络搭建。

class LstmCapsuleAttenModel(nn.Module):def __init__(self, embedding_matrix, maxlen=200, lstm_hidden_size=128, gru_hidden_size=128,embedding_dropout=0.2, dropout1=0.2, dropout2=0.1, out_size=16,num_capsule=5, dim_capsule=5, caps_out=1, caps_dropout=0.3):super(LstmCapsuleAttenModel, self).__init__()self.embedding = nn.Embedding(*embedding_matrix.shape)self.embedding.weight = nn.Parameter(torch.tensor(embedding_matrix, dtype=torch.float32))self.embedding.weight.requires_grad = Falseself.embedding_dropout = nn.Dropout2d(embedding_dropout)self.lstm = nn.LSTM(embedding_matrix.shape[1], lstm_hidden_size, bidirectional=True, batch_first=True)self.gru = nn.GRU(lstm_hidden_size * 2, gru_hidden_size, bidirectional=True, batch_first=True)self.lstm_attention = Attention(lstm_hidden_size * 2, maxlen=maxlen)self.gru_attention = Attention(gru_hidden_size * 2, maxlen=maxlen)self.capsule = Capsule(input_dim_capsule=gru_hidden_size * 2,num_capsule=num_capsule,dim_capsule=dim_capsule)self.dropout_caps = nn.Dropout(caps_dropout)self.lin_caps = nn.Linear(num_capsule * dim_capsule, caps_out)self.norm = nn.LayerNorm(lstm_hidden_size * 2 + gru_hidden_size * 6 + caps_out)self.dropout1 = nn.Dropout(dropout1)self.linear = nn.Linear(lstm_hidden_size * 2 + gru_hidden_size * 6 + caps_out, out_size)self.dropout2 = nn.Dropout(dropout2)self.out = nn.Linear(out_size, 1)def apply_spatial_dropout(self, h_embedding):h_embedding = h_embedding.transpose(1, 2).unsqueeze(2)h_embedding = self.embedding_dropout(h_embedding).squeeze(2).transpose(1, 2)return h_embeddingdef forward(self, x):h_embedding = self.embedding(x)h_embedding = self.apply_spatial_dropout(h_embedding)h_lstm, _ = self.lstm(h_embedding)h_gru, _ = self.gru(h_lstm)h_lstm_atten = self.lstm_attention(h_lstm)h_gru_atten = self.gru_attention(h_gru)content3 = self.capsule(h_gru)batch_size = content3.size(0)content3 = content3.view(batch_size, -1)content3 = self.dropout_caps(content3)content3 = torch.relu(self.lin_caps(content3))avg_pool = torch.mean(h_gru, 1)max_pool, _ = torch.max(h_gru, 1)conc = torch.cat((h_lstm_atten, h_gru_atten, content3, avg_pool, max_pool), 1)conc = self.norm(conc)conc = self.dropout1(conc)conc = torch.relu(conc)conc = self.linear(conc)conc = self.dropout2(conc)out = self.out(conc)return out

6、模型3 LstmConvModel

该模型有LSTM和Convolutional Neural Network搭建

class LstmConvModel(nn.Module):def __init__(self, embedding_matrix, lstm_hidden_size=128, gru_hidden_size=128, n_channels=64,embedding_dropout=0.2, out_size=20, out_dropout=0.1):super(LstmConvModel, self).__init__()self.embedding = nn.Embedding(*embedding_matrix.shape)self.embedding.weight = nn.Parameter(torch.tensor(embedding_matrix, dtype=torch.float32))self.embedding.weight.requires_grad = Falseself.embedding_dropout = nn.Dropout2d(0.2)self.lstm = nn.LSTM(embedding_matrix.shape[1], lstm_hidden_size, bidirectional=True, batch_first=True)self.gru = nn.GRU(lstm_hidden_size * 2, gru_hidden_size, bidirectional=True, batch_first=True)self.conv = nn.Conv1d(gru_hidden_size * 2, n_channels, 3, padding=2)nn.init.xavier_uniform_(self.conv.weight)self.linear = nn.Linear(n_channels * 2, out_size)self.relu = nn.ReLU()self.dropout = nn.Dropout(out_dropout)self.out = nn.Linear(out_size, 1)def apply_spatial_dropout(self, h_embedding):h_embedding = h_embedding.transpose(1, 2).unsqueeze(2)h_embedding = self.embedding_dropout(h_embedding).squeeze(2).transpose(1, 2)return h_embeddingdef forward(self, x):h_embedding = self.embedding(x)h_embedding = self.apply_spatial_dropout(h_embedding)h_lstm, _ = self.lstm(h_embedding)h_gru, _ = self.gru(h_lstm)h_gru = h_gru.transpose(2, 1)conv = self.conv(h_gru)conv_avg_pool = torch.mean(conv, 2)conv_max_pool, _ = torch.max(conv, 2)conc = torch.cat((conv_avg_pool, conv_max_pool), 1)conc = self.relu(self.linear(conc))conc = self.dropout(conc)out = self.out(conc)return out

7、模型4 Bert&GPT2

from pytorch_pretrained_bert import GPT2Model
import torch
from torch import nnclass GPT2ClassificationHeadModel(GPT2Model):def __init__(self, config, clf_dropout=0.4, n_class=8):super(GPT2ClassificationHeadModel, self).__init__(config)self.transformer = GPT2Model(config)self.dropout = nn.Dropout(clf_dropout)self.linear = nn.Linear(config.n_embd * 3, n_class)nn.init.normal_(self.linear.weight, std=0.02)nn.init.normal_(self.linear.bias, 0)self.apply(self.init_weights)def forward(self, input_ids, position_ids=None, token_type_ids=None, lm_labels=None, past=None):hidden_states, presents = self.transformer(input_ids, position_ids, token_type_ids, past)avg_pool = torch.mean(hidden_states, 1)max_pool, _ = torch.max(hidden_states, 1)h_conc = torch.cat((avg_pool, max_pool, hidden_states[:, -1, :]), 1)logits = self.linear(self.dropout(h_conc))return logits

代码获取:
链接:https://pan.baidu.com/s/1JdAe2sWRyuNShVhFF0ZvGg
提取码:lm80
复制这段内容后打开百度网盘手机App,操作更方便哦

8、相关知识点

1 胶囊网络

Capsule Neural 相较于传统神经网络的区别在于,传统 Neuron 每一个 node 输出为一个激活后的具体数值,而经过 Capsule 输出后得到的则是一个向量,乍一看感觉好好输出个数字,为什么要麻麻烦烦输出一个向量。其实这关乎于一个重点就是神经网络状态的表征,输出向量可以更丰富的表达节点提取的特征,甚至也可以其他降低网络层参数数目的目的。因此对于同一个特征,原本 neuron 的时候我们可能需要多个 nodes 来识别,而现在我们只需要一个 vector,用 vector 中的不同维度来记录同一个特征的不同属性。
--慢学NLP / Capsule Net 胶囊网络


论文:Towards Scalable and Reliable Capsule Networks for Challenging NLP Applications
https://www.aclweb.org/anthology/P19-1150.pdf
代码:https://github.com/andyweizhao/NLP-Capsule

 

2 Spatial Dropout

SpatialDropout是Tompson等人在图像领域提出的一种dropout方法。普通的dropout会随机地将部分元素置零,而SpatialDropout会随机地将部分区域置零,该dropout方法在图像识别领域实践证明是有效的。
--Spatial Dropout

当咱们对该张量使用dropout技术时,你会发现普通的dropout会随机独立地将部分元素置零,而SpatialDropout1D会随机地对某个特定的纬度所有置零,以下图所示:

9、更多方案解析

1、kaggle的Jigsaw多语言评论识别全球top15比赛心得分享
https://zhuanlan.zhihu.com/p/338169840
2、kaggle Jigsaw Unintended Bias in Toxicity Classification 金牌rank15分享
https://xuanzebi.github.io/2019/07/20/JUBTC/

欢迎扫码关注ChallengeHub公众号
在这里插入图片描述
欢迎加入ChallengeHub学习交流群
在这里插入图片描述

这篇关于Kaggle Jigsaw文本分类比赛方案总结的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/415459

相关文章

苹果macOS 26 Tahoe主题功能大升级:可定制图标/高亮文本/文件夹颜色

《苹果macOS26Tahoe主题功能大升级:可定制图标/高亮文本/文件夹颜色》在整体系统设计方面,macOS26采用了全新的玻璃质感视觉风格,应用于Dock栏、应用图标以及桌面小部件等多个界面... 科技媒体 MACRumors 昨日(6 月 13 日)发布博文,报道称在 macOS 26 Tahoe 中

Python实现精准提取 PDF中的文本,表格与图片

《Python实现精准提取PDF中的文本,表格与图片》在实际的系统开发中,处理PDF文件不仅限于读取整页文本,还有提取文档中的表格数据,图片或特定区域的内容,下面我们来看看如何使用Python实... 目录安装 python 库提取 PDF 文本内容:获取整页文本与指定区域内容获取页面上的所有文本内容获取

SQL中JOIN操作的条件使用总结与实践

《SQL中JOIN操作的条件使用总结与实践》在SQL查询中,JOIN操作是多表关联的核心工具,本文将从原理,场景和最佳实践三个方面总结JOIN条件的使用规则,希望可以帮助开发者精准控制查询逻辑... 目录一、ON与WHERE的本质区别二、场景化条件使用规则三、最佳实践建议1.优先使用ON条件2.WHERE用

SpringBoot服务获取Pod当前IP的两种方案

《SpringBoot服务获取Pod当前IP的两种方案》在Kubernetes集群中,SpringBoot服务获取Pod当前IP的方案主要有两种,通过环境变量注入或通过Java代码动态获取网络接口IP... 目录方案一:通过 Kubernetes Downward API 注入环境变量原理步骤方案二:通过

Springboot3+将ID转为JSON字符串的详细配置方案

《Springboot3+将ID转为JSON字符串的详细配置方案》:本文主要介绍纯后端实现Long/BigIntegerID转为JSON字符串的详细配置方案,s基于SpringBoot3+和Spr... 目录1. 添加依赖2. 全局 Jackson 配置3. 精准控制(可选)4. OpenAPI (Spri

关于跨域无效的问题及解决(java后端方案)

《关于跨域无效的问题及解决(java后端方案)》:本文主要介绍关于跨域无效的问题及解决(java后端方案),具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录通用后端跨域方法1、@CrossOrigin 注解2、springboot2.0 实现WebMvcConfig

在Java中将XLS转换为XLSX的实现方案

《在Java中将XLS转换为XLSX的实现方案》在本文中,我们将探讨传统ExcelXLS格式与现代XLSX格式的结构差异,并为Java开发者提供转换方案,通过了解底层原理、性能优势及实用工具,您将掌握... 目录为什么升级XLS到XLSX值得投入?实际转换过程解析推荐技术方案对比Apache POI实现编程

Nginx Location映射规则总结归纳与最佳实践

《NginxLocation映射规则总结归纳与最佳实践》Nginx的location指令是配置请求路由的核心机制,其匹配规则直接影响请求的处理流程,下面给大家介绍NginxLocation映射规则... 目录一、Location匹配规则与优先级1. 匹配模式2. 优先级顺序3. 匹配示例二、Proxy_pa

Android学习总结之Java和kotlin区别超详细分析

《Android学习总结之Java和kotlin区别超详细分析》Java和Kotlin都是用于Android开发的编程语言,它们各自具有独特的特点和优势,:本文主要介绍Android学习总结之Ja... 目录一、空安全机制真题 1:Kotlin 如何解决 Java 的 NullPointerExceptio

详解如何使用Python从零开始构建文本统计模型

《详解如何使用Python从零开始构建文本统计模型》在自然语言处理领域,词汇表构建是文本预处理的关键环节,本文通过Python代码实践,演示如何从原始文本中提取多尺度特征,并通过动态调整机制构建更精确... 目录一、项目背景与核心思想二、核心代码解析1. 数据加载与预处理2. 多尺度字符统计3. 统计结果可