【H.264/AVC视频编解码技术详解】十四、H.264的变换编码(一)——矩阵运算与正交变换基本概念

本文主要是介绍【H.264/AVC视频编解码技术详解】十四、H.264的变换编码(一)——矩阵运算与正交变换基本概念,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

《H.264/AVC视频编解码技术详解》视频教程已经在“CSDN学院”上线,视频中详述了H.264的背景、标准协议和实现,并通过一个实战工程的形式对H.264的标准进行解析和实现,欢迎观看!

“纸上得来终觉浅,绝知此事要躬行”,只有自己按照标准文档以代码的形式操作一遍,才能对视频压缩编码标准的思想和方法有足够深刻的理解和体会!

链接地址:H.264/AVC视频编解码技术详解

GitHub代码地址:点击这里


1. 矩阵的定义

矩阵,英文称为"Matrix",是数学中一个非常重要的概念。从形式上看,矩阵可以用一个m行n列的数组成的表格表示。如下图可表示一个4行4列的方形矩阵:

在实际应用中,矩阵可以在多个技术领域发挥重要作用,如音视频压缩编码、机器学习、人工智能等领域。
在这里插入图片描述

2. 矩阵的运算

矩阵必须在计算中才能与其他数据进行交互。在《线性代数》中我们已经清楚地知道,矩阵可以进行求和、数乘和与矩阵相乘等运算。其中矩阵的求和与数乘运算十分简单:

  • 矩阵求和:同型矩阵可以求和,即将对应元素求和组成新的矩阵;
  • 矩阵数乘:任何矩阵都可与实数相乘,即将每个元素与该数字相乘组成新的矩阵;

而相比之下,矩阵与矩阵相乘会略显复杂,需要满足必要条件,即矩阵1的宽必须等于矩阵2的高方可相乘。乘积矩阵的高和宽分别为矩阵1的高和矩阵2的宽,如下图表示:
这里写图片描述

其中,乘积矩阵的元素的计算方法为:
这里写图片描述

通常,我们将只有一行或一列的矩阵称之为向量。根据排列的不同,按行或列排列的向量分别称之为行向量和列向量。

3. 向量和矩阵的线性变换

向量的线性变换定义为:向量y的每一个元素都是向量x中元素的线性组合,则y是x的线性变换。假设有向量[x1, x2, x3]和向量[y1, y2, y3],两个向量满足以下关系:

  • y1 = a11 * x1 + a12 * x2 + a13 * x3
  • y2 = a21 * x1 + a22 * x2 + a23 * x3
  • y3 = a31 * x1 + a32 * x2 + a33 * x3

那么我们称向量[y1, y2, y3]可以被向量[x1, x2, x3]线性表示,以公式形式则表示为y=A·x。其含义可表示为矩阵与向量相乘:

这里写图片描述

矩阵A即为该线性变换的矩阵。

将向量的变换推广,矩阵可以视为由向量构成,因此线性线性变换同样适用于矩阵的变换:

这里写图片描述

4. 向量的正交性、正交矩阵和正交变换

要了解向量的正交性,首先应了解向量的内积的概念。在“不严格”的条件下,我们暂且可以将向量的内积理解为数量积,即两个相同长度向量对应元素乘积的总和。用公式表示为:

这里写图片描述

而向量的正交,等价于两个向量的内积为0。即:

这里写图片描述

在二维和三维空间内直观地表示,两个正交向量相互垂直:
这里写图片描述

由于矩阵可视为由多个列向量构成,那么多个两两正交的向量可以构成正交矩阵。一个矩阵是正交矩阵需要满足的条件有:

  • 行数和列数相等,即正交矩阵都为方阵;
  • 每一个列向量均为单位向量,即长度均为1;
  • 各列向量两两正交;

前面提到,每一个矩阵都可以与一个线性变换对应。那么如果一个线性变换对应的变换矩阵是正交矩阵,那么该变换就是一个正交变换。正交变换的显著特点之一是,向量经过正交变换后长度不会发生变化。


5. 离散余弦变换

离散余弦变换 (Discrete Cosine Transform, DCT)类似于一种实数类型的离散傅里叶变换(DFT),其定义有多种形式(可参考维基百科:离散余弦变换)。常用场合中使用的离散余弦变换是一个正交变换,其正变换和逆变换的计算方法如:

这里写图片描述

这里写图片描述

由于DCT具有类似于DFT的特性,DCT也可以实现如信息能量集中的功能。对于图像数据,DCT可以有效将大部分的能量集中与直流和低频部分,这也成为视频压缩中变换编码的理论基础之一。实际上,DCT长期应用与多种图像和视频的压缩编码标准中:

  • 视频:MPEG-1/MPEG-2;
  • 图像:JPEG

在H.264及更新的视频压缩标准中,采用的是DCT的优化改进版——整数变换。相对于浮点类型的离散余弦变换,整数变换有效降低了变换操作的运算复杂度,提升了编解码器的运行效率。

这篇关于【H.264/AVC视频编解码技术详解】十四、H.264的变换编码(一)——矩阵运算与正交变换基本概念的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/415372

相关文章

MySQL数据库双机热备的配置方法详解

《MySQL数据库双机热备的配置方法详解》在企业级应用中,数据库的高可用性和数据的安全性是至关重要的,MySQL作为最流行的开源关系型数据库管理系统之一,提供了多种方式来实现高可用性,其中双机热备(M... 目录1. 环境准备1.1 安装mysql1.2 配置MySQL1.2.1 主服务器配置1.2.2 从

Linux kill正在执行的后台任务 kill进程组使用详解

《Linuxkill正在执行的后台任务kill进程组使用详解》文章介绍了两个脚本的功能和区别,以及执行这些脚本时遇到的进程管理问题,通过查看进程树、使用`kill`命令和`lsof`命令,分析了子... 目录零. 用到的命令一. 待执行的脚本二. 执行含子进程的脚本,并kill2.1 进程查看2.2 遇到的

MyBatis常用XML语法详解

《MyBatis常用XML语法详解》文章介绍了MyBatis常用XML语法,包括结果映射、查询语句、插入语句、更新语句、删除语句、动态SQL标签以及ehcache.xml文件的使用,感兴趣的朋友跟随小... 目录1、定义结果映射2、查询语句3、插入语句4、更新语句5、删除语句6、动态 SQL 标签7、ehc

详解SpringBoot+Ehcache使用示例

《详解SpringBoot+Ehcache使用示例》本文介绍了SpringBoot中配置Ehcache、自定义get/set方式,并实际使用缓存的过程,文中通过示例代码介绍的非常详细,对大家的学习或者... 目录摘要概念内存与磁盘持久化存储:配置灵活性:编码示例引入依赖:配置ehcache.XML文件:配置

从基础到高级详解Go语言中错误处理的实践指南

《从基础到高级详解Go语言中错误处理的实践指南》Go语言采用了一种独特而明确的错误处理哲学,与其他主流编程语言形成鲜明对比,本文将为大家详细介绍Go语言中错误处理详细方法,希望对大家有所帮助... 目录1 Go 错误处理哲学与核心机制1.1 错误接口设计1.2 错误与异常的区别2 错误创建与检查2.1 基础

k8s按需创建PV和使用PVC详解

《k8s按需创建PV和使用PVC详解》Kubernetes中,PV和PVC用于管理持久存储,StorageClass实现动态PV分配,PVC声明存储需求并绑定PV,通过kubectl验证状态,注意回收... 目录1.按需创建 PV(使用 StorageClass)创建 StorageClass2.创建 PV

Python版本信息获取方法详解与实战

《Python版本信息获取方法详解与实战》在Python开发中,获取Python版本号是调试、兼容性检查和版本控制的重要基础操作,本文详细介绍了如何使用sys和platform模块获取Python的主... 目录1. python版本号获取基础2. 使用sys模块获取版本信息2.1 sys模块概述2.1.1

一文详解Python如何开发游戏

《一文详解Python如何开发游戏》Python是一种非常流行的编程语言,也可以用来开发游戏模组,:本文主要介绍Python如何开发游戏的相关资料,文中通过代码介绍的非常详细,需要的朋友可以参考下... 目录一、python简介二、Python 开发 2D 游戏的优劣势优势缺点三、Python 开发 3D

Redis 基本数据类型和使用详解

《Redis基本数据类型和使用详解》String是Redis最基本的数据类型,一个键对应一个值,它的功能十分强大,可以存储字符串、整数、浮点数等多种数据格式,本文给大家介绍Redis基本数据类型和... 目录一、Redis 入门介绍二、Redis 的五大基本数据类型2.1 String 类型2.2 Hash

Java中的.close()举例详解

《Java中的.close()举例详解》.close()方法只适用于通过window.open()打开的弹出窗口,对于浏览器的主窗口,如果没有得到用户允许是不能关闭的,:本文主要介绍Java中的.... 目录当你遇到以下三种情况时,一定要记得使用 .close():用法作用举例如何判断代码中的 input