【H.264/AVC视频编解码技术详解】十四、H.264的变换编码(一)——矩阵运算与正交变换基本概念

本文主要是介绍【H.264/AVC视频编解码技术详解】十四、H.264的变换编码(一)——矩阵运算与正交变换基本概念,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

《H.264/AVC视频编解码技术详解》视频教程已经在“CSDN学院”上线,视频中详述了H.264的背景、标准协议和实现,并通过一个实战工程的形式对H.264的标准进行解析和实现,欢迎观看!

“纸上得来终觉浅,绝知此事要躬行”,只有自己按照标准文档以代码的形式操作一遍,才能对视频压缩编码标准的思想和方法有足够深刻的理解和体会!

链接地址:H.264/AVC视频编解码技术详解

GitHub代码地址:点击这里


1. 矩阵的定义

矩阵,英文称为"Matrix",是数学中一个非常重要的概念。从形式上看,矩阵可以用一个m行n列的数组成的表格表示。如下图可表示一个4行4列的方形矩阵:

在实际应用中,矩阵可以在多个技术领域发挥重要作用,如音视频压缩编码、机器学习、人工智能等领域。
在这里插入图片描述

2. 矩阵的运算

矩阵必须在计算中才能与其他数据进行交互。在《线性代数》中我们已经清楚地知道,矩阵可以进行求和、数乘和与矩阵相乘等运算。其中矩阵的求和与数乘运算十分简单:

  • 矩阵求和:同型矩阵可以求和,即将对应元素求和组成新的矩阵;
  • 矩阵数乘:任何矩阵都可与实数相乘,即将每个元素与该数字相乘组成新的矩阵;

而相比之下,矩阵与矩阵相乘会略显复杂,需要满足必要条件,即矩阵1的宽必须等于矩阵2的高方可相乘。乘积矩阵的高和宽分别为矩阵1的高和矩阵2的宽,如下图表示:
这里写图片描述

其中,乘积矩阵的元素的计算方法为:
这里写图片描述

通常,我们将只有一行或一列的矩阵称之为向量。根据排列的不同,按行或列排列的向量分别称之为行向量和列向量。

3. 向量和矩阵的线性变换

向量的线性变换定义为:向量y的每一个元素都是向量x中元素的线性组合,则y是x的线性变换。假设有向量[x1, x2, x3]和向量[y1, y2, y3],两个向量满足以下关系:

  • y1 = a11 * x1 + a12 * x2 + a13 * x3
  • y2 = a21 * x1 + a22 * x2 + a23 * x3
  • y3 = a31 * x1 + a32 * x2 + a33 * x3

那么我们称向量[y1, y2, y3]可以被向量[x1, x2, x3]线性表示,以公式形式则表示为y=A·x。其含义可表示为矩阵与向量相乘:

这里写图片描述

矩阵A即为该线性变换的矩阵。

将向量的变换推广,矩阵可以视为由向量构成,因此线性线性变换同样适用于矩阵的变换:

这里写图片描述

4. 向量的正交性、正交矩阵和正交变换

要了解向量的正交性,首先应了解向量的内积的概念。在“不严格”的条件下,我们暂且可以将向量的内积理解为数量积,即两个相同长度向量对应元素乘积的总和。用公式表示为:

这里写图片描述

而向量的正交,等价于两个向量的内积为0。即:

这里写图片描述

在二维和三维空间内直观地表示,两个正交向量相互垂直:
这里写图片描述

由于矩阵可视为由多个列向量构成,那么多个两两正交的向量可以构成正交矩阵。一个矩阵是正交矩阵需要满足的条件有:

  • 行数和列数相等,即正交矩阵都为方阵;
  • 每一个列向量均为单位向量,即长度均为1;
  • 各列向量两两正交;

前面提到,每一个矩阵都可以与一个线性变换对应。那么如果一个线性变换对应的变换矩阵是正交矩阵,那么该变换就是一个正交变换。正交变换的显著特点之一是,向量经过正交变换后长度不会发生变化。


5. 离散余弦变换

离散余弦变换 (Discrete Cosine Transform, DCT)类似于一种实数类型的离散傅里叶变换(DFT),其定义有多种形式(可参考维基百科:离散余弦变换)。常用场合中使用的离散余弦变换是一个正交变换,其正变换和逆变换的计算方法如:

这里写图片描述

这里写图片描述

由于DCT具有类似于DFT的特性,DCT也可以实现如信息能量集中的功能。对于图像数据,DCT可以有效将大部分的能量集中与直流和低频部分,这也成为视频压缩中变换编码的理论基础之一。实际上,DCT长期应用与多种图像和视频的压缩编码标准中:

  • 视频:MPEG-1/MPEG-2;
  • 图像:JPEG

在H.264及更新的视频压缩标准中,采用的是DCT的优化改进版——整数变换。相对于浮点类型的离散余弦变换,整数变换有效降低了变换操作的运算复杂度,提升了编解码器的运行效率。

这篇关于【H.264/AVC视频编解码技术详解】十四、H.264的变换编码(一)——矩阵运算与正交变换基本概念的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/415372

相关文章

Redis中6种缓存更新策略详解

《Redis中6种缓存更新策略详解》Redis作为一款高性能的内存数据库,已经成为缓存层的首选解决方案,然而,使用缓存时最大的挑战在于保证缓存数据与底层数据源的一致性,本文将介绍Redis中6种缓存更... 目录引言策略一:Cache-Aside(旁路缓存)策略工作原理代码示例优缺点分析适用场景策略二:Re

Java注解之超越Javadoc的元数据利器详解

《Java注解之超越Javadoc的元数据利器详解》本文将深入探讨Java注解的定义、类型、内置注解、自定义注解、保留策略、实际应用场景及最佳实践,无论是初学者还是资深开发者,都能通过本文了解如何利用... 目录什么是注解?注解的类型内置注编程解自定义注解注解的保留策略实际用例最佳实践总结在 Java 编程

MySQL数据库约束深入详解

《MySQL数据库约束深入详解》:本文主要介绍MySQL数据库约束,在MySQL数据库中,约束是用来限制进入表中的数据类型的一种技术,通过使用约束,可以确保数据的准确性、完整性和可靠性,需要的朋友... 目录一、数据库约束的概念二、约束类型三、NOT NULL 非空约束四、DEFAULT 默认值约束五、UN

Python使用Matplotlib绘制3D曲面图详解

《Python使用Matplotlib绘制3D曲面图详解》:本文主要介绍Python使用Matplotlib绘制3D曲面图,在Python中,使用Matplotlib库绘制3D曲面图可以通过mpl... 目录准备工作绘制简单的 3D 曲面图绘制 3D 曲面图添加线框和透明度控制图形视角Matplotlib

MySQL中的分组和多表连接详解

《MySQL中的分组和多表连接详解》:本文主要介绍MySQL中的分组和多表连接的相关操作,本文通过实例代码给大家介绍的非常详细,感兴趣的朋友一起看看吧... 目录mysql中的分组和多表连接一、MySQL的分组(group javascriptby )二、多表连接(表连接会产生大量的数据垃圾)MySQL中的

Java 实用工具类Spring 的 AnnotationUtils详解

《Java实用工具类Spring的AnnotationUtils详解》Spring框架提供了一个强大的注解工具类org.springframework.core.annotation.Annot... 目录前言一、AnnotationUtils 的常用方法二、常见应用场景三、与 JDK 原生注解 API 的

redis中使用lua脚本的原理与基本使用详解

《redis中使用lua脚本的原理与基本使用详解》在Redis中使用Lua脚本可以实现原子性操作、减少网络开销以及提高执行效率,下面小编就来和大家详细介绍一下在redis中使用lua脚本的原理... 目录Redis 执行 Lua 脚本的原理基本使用方法使用EVAL命令执行 Lua 脚本使用EVALSHA命令

SpringBoot3.4配置校验新特性的用法详解

《SpringBoot3.4配置校验新特性的用法详解》SpringBoot3.4对配置校验支持进行了全面升级,这篇文章为大家详细介绍了一下它们的具体使用,文中的示例代码讲解详细,感兴趣的小伙伴可以参考... 目录基本用法示例定义配置类配置 application.yml注入使用嵌套对象与集合元素深度校验开发

Python中的Walrus运算符分析示例详解

《Python中的Walrus运算符分析示例详解》Python中的Walrus运算符(:=)是Python3.8引入的一个新特性,允许在表达式中同时赋值和返回值,它的核心作用是减少重复计算,提升代码简... 目录1. 在循环中避免重复计算2. 在条件判断中同时赋值变量3. 在列表推导式或字典推导式中简化逻辑

Python位移操作和位运算的实现示例

《Python位移操作和位运算的实现示例》本文主要介绍了Python位移操作和位运算的实现示例,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一... 目录1. 位移操作1.1 左移操作 (<<)1.2 右移操作 (>>)注意事项:2. 位运算2.1