【建模算法】TOPSIS法(Python实现)

2023-11-23 04:00

本文主要是介绍【建模算法】TOPSIS法(Python实现),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

【建模算法】TOPSIS法(Python实现)

Topsis法,全称为Technique for Order Preference by Similarity to an Ideal Solution,中文常翻译为“优劣解距离法”或“逼近理想解排序法”,该方法是一种通过比较样本值与理想值的距离实现综合评价的方法。能够根据现有的数据,对个体进行评价排序。TOPSIS算法是直接用来评价的,它也可以和赋权方法一起使用。

逼近理想解排序法(TOPSIS),采用相对接近度来表征各个评价对象与参考点的距离。首先在空间确定出参考点,包括最优和最劣点,然后计算各个评价对象与参考点的距离,与最优点越近或与最劣点越远说明被评价对象的综合特性越好。

一、问题描述

现需要对投标者进行综合评价,实现某招标公司的招标项目决策。现有A、B、C、D四个投标者,招标公司对它们的总价、人力、方案、设备级别、公司级别、能力成熟度分别进行评价,觉得哪个投标者应该中标?投标单位的各项指标数量与分值如下:
在这里插入图片描述

二、TOPSIS法评价步骤

step0:指标正向化

不同的指标代表含义不一样,有的指标越大越好,称为越大越优型指标。有的指标越小越好,称为越小越优型指标,而有些指标在某个点是最好的,称为某点最优型指标。为方便评价,应把所有指标转化成越大越优型指标。

设有m个待评对象,n个评价指标,可以构成数据矩阵 X = ( x i j ) m × n X=(x_{ij})_{m\times n} X=(xij)m×n , 设数据矩阵内元素,经过指标正向化处理过后的元素为 x i j ′ {x}^{\prime}_{ij} xij

  • 越小越优型指标:

x i j ′ = m a x ( x i j ) − x i j x^{\prime}_{ij}=max{(x_{ij})}-x_{ij} xij=max(xij)xij

其他处理方法也可,只要指标性质不变即可

  • 某点最优型指标:

    设最优点为a, 当a=90时E最优。
    在这里插入图片描述

​ 其他处理方法也可,只要指标性质不变即可

  • 越大越优型指标:

x i j ′ = x i j x^{\prime}_{ij}=x_{ij} xij=xij

此类指标可以不用处理,想要处理也可,只要指标性质不变

step1:数据标准化

因为本案例数据指标都是正向指标,不需要进行指标正向化,若有其他性质指标应把它们都正向化。

本案例直接进入数据标准化,每个指标的数量级不一样,需要把它们化到同一个范围内比较。可以用最大最小值标准化方法。本案例使用另一方法。

设有m个待评对象,n个评价指标,可以构成数据矩阵 X = ( x i j ) m × n X=(x_{ij})_{m\times n} X=(xij)m×n ,设数据矩阵内元素 x i j x_{ij} xij,标准化处理过后的元素为 x i j ′ x^{\prime}_{ij} xij
x i j ′ = x i j ∑ i = 1 m x i j 2 x^{\prime}_{ij}=\frac{x_{ij}}{\sqrt{\sum^m_{i=1}x^2_{ij}}} xij=i=1mxij2 xij

step2:计算加权后的矩阵

之前有讲过层次分析法、熵权法、变异系数法,都是获取权重的方法,可以翻看之前的文章。现设得到指标的权重为 w i w_i wi ,加权重后的数据为 r i j r_{ij} rij

每个指标的数量级不一样,需要把它们化到同一个范围内比较。上一篇建模算法用到了最大最小值标准化方法。此篇可以用一个新的标准化方法,处理如下:

设标准化后的数据矩阵元素为 r i j r_{ij} rij ,由上可得指标正向化后数据矩阵元素为 x i j ′ x^{\prime}_{ij} xij
r i j = w j x i j ′ r_{ij}=w_jx^{\prime}_{ij} rij=wjxij

step3:计算矩阵和最值之间的距离

处理过后可以构成数据矩阵 R = ( r i j ) m × n R=(r_{ij})_{m\times n} R=(rij)m×n

  • 定义每个指标即每列的最大值为 r j + r^+_j rj+
    r j + = m a x ( r 1 j , r 2 j , . . . , r n j ) r^+_{j}=max(r_{1j},r_{2j},...,r_{nj}) rj+=max(r1j,r2j,...,rnj)

  • 定义每个指标即每列的最小值为 r j − r^{-}_{j} rj
    r j − = m i n ( r 1 j , r 2 j , . . . , r n j ) r^{-}_{j}=min(r_{1j},r_{2j},...,r_{nj}) rj=min(r1j,r2j,...,rnj)

  • 定义第i个对象与最大值距离为 d i + d^{+}_{i} di+
    d i + = ∑ j = 1 n ( r j + − r i j ) 2 d^+_i=\sqrt{\sum^n_{j=1}(r^+_j-r_{ij})^2} di+=j=1n(rj+rij)2

  • 定义第i个对象与最小值距离为 d i − d^-_i di
    d i − = ∑ j = 1 n ( r j − − r i j ) 2 d^{-}_{i}=\sqrt{\sum^n_{j=1}(r^{-}_{j}-r_{ij})^2} di=j=1n(rjrij)2

step4:计算评分

得分为:
S c o r e i = d i − d i + + d i − Score_i=\frac{d^-_i}{d^+_i+d^-_i} Scorei=di++didi
明显可以看出 0 ≤ S c o r e i ≤ 1 0\leq Score_i\leq 1 0Scorei1 ,当 S c o r e i Score_i Scorei越大时,

d i + d^+_i di+越小,说明指标离最大值距离越小,越接近最大值。

三、求解结果

结果如下:
在这里插入图片描述

四、实现代码

Python源码:

import pandas as pd
import numpy as np#读取数据
data=pd.read_excel('投标单位各项指标和分值.xlsx')#数据标准化
label_need=data.keys()[1:]
data1=data[label_need].values
[m,n]=data1.shape
data2=data1.copy().astype('float')
for j in range(0,n):data2[:,j]=data1[:,j]/np.sqrt(sum(np.square(data1[:,j])))#计算加权重后的数据
w=[0.3724, 0.1003,0.1991, 0.1991,0.0998,0.0485]   #使用求权重的方法求得,参见文献1
R=data2*w#计算最大最小值距离
r_max=np.max(R,axis=0)   #每个指标的最大值
r_min=np.min(R,axis=0)   #每个指标的最小值
d_z = np.sqrt(np.sum(np.square((R -np.tile(r_max,(m,1)))),axis=1))  #d+向量
d_f = np.sqrt(np.sum(np.square((R -np.tile(r_min,(m,1)))),axis=1))  #d-向量  #计算得分
s=d_f/(d_z+d_f )
Score=100*s/max(s)
for i in range(0,len(Score)):print(f"第{i+1}个投标者百分制得分为:{Score[i]}") 

参考文献:

【1】陈雷,王延章.基于熵权系数与TOPSIS集成评价决策方法的研究[J].控制与决策,2003(04):456-459.

这篇关于【建模算法】TOPSIS法(Python实现)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/415197

相关文章

SpringBoot集成redisson实现延时队列教程

《SpringBoot集成redisson实现延时队列教程》文章介绍了使用Redisson实现延迟队列的完整步骤,包括依赖导入、Redis配置、工具类封装、业务枚举定义、执行器实现、Bean创建、消费... 目录1、先给项目导入Redisson依赖2、配置redis3、创建 RedissonConfig 配

Python的Darts库实现时间序列预测

《Python的Darts库实现时间序列预测》Darts一个集统计、机器学习与深度学习模型于一体的Python时间序列预测库,本文主要介绍了Python的Darts库实现时间序列预测,感兴趣的可以了解... 目录目录一、什么是 Darts?二、安装与基本配置安装 Darts导入基础模块三、时间序列数据结构与

Python正则表达式匹配和替换的操作指南

《Python正则表达式匹配和替换的操作指南》正则表达式是处理文本的强大工具,Python通过re模块提供了完整的正则表达式功能,本文将通过代码示例详细介绍Python中的正则匹配和替换操作,需要的朋... 目录基础语法导入re模块基本元字符常用匹配方法1. re.match() - 从字符串开头匹配2.

Python使用FastAPI实现大文件分片上传与断点续传功能

《Python使用FastAPI实现大文件分片上传与断点续传功能》大文件直传常遇到超时、网络抖动失败、失败后只能重传的问题,分片上传+断点续传可以把大文件拆成若干小块逐个上传,并在中断后从已完成分片继... 目录一、接口设计二、服务端实现(FastAPI)2.1 运行环境2.2 目录结构建议2.3 serv

C#实现千万数据秒级导入的代码

《C#实现千万数据秒级导入的代码》在实际开发中excel导入很常见,现代社会中很容易遇到大数据处理业务,所以本文我就给大家分享一下千万数据秒级导入怎么实现,文中有详细的代码示例供大家参考,需要的朋友可... 目录前言一、数据存储二、处理逻辑优化前代码处理逻辑优化后的代码总结前言在实际开发中excel导入很

通过Docker容器部署Python环境的全流程

《通过Docker容器部署Python环境的全流程》在现代化开发流程中,Docker因其轻量化、环境隔离和跨平台一致性的特性,已成为部署Python应用的标准工具,本文将详细演示如何通过Docker容... 目录引言一、docker与python的协同优势二、核心步骤详解三、进阶配置技巧四、生产环境最佳实践

Python一次性将指定版本所有包上传PyPI镜像解决方案

《Python一次性将指定版本所有包上传PyPI镜像解决方案》本文主要介绍了一个安全、完整、可离线部署的解决方案,用于一次性准备指定Python版本的所有包,然后导出到内网环境,感兴趣的小伙伴可以跟随... 目录为什么需要这个方案完整解决方案1. 项目目录结构2. 创建智能下载脚本3. 创建包清单生成脚本4

SpringBoot+RustFS 实现文件切片极速上传的实例代码

《SpringBoot+RustFS实现文件切片极速上传的实例代码》本文介绍利用SpringBoot和RustFS构建高性能文件切片上传系统,实现大文件秒传、断点续传和分片上传等功能,具有一定的参考... 目录一、为什么选择 RustFS + SpringBoot?二、环境准备与部署2.1 安装 RustF

Nginx部署HTTP/3的实现步骤

《Nginx部署HTTP/3的实现步骤》本文介绍了在Nginx中部署HTTP/3的详细步骤,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学... 目录前提条件第一步:安装必要的依赖库第二步:获取并构建 BoringSSL第三步:获取 Nginx

MyBatis Plus实现时间字段自动填充的完整方案

《MyBatisPlus实现时间字段自动填充的完整方案》在日常开发中,我们经常需要记录数据的创建时间和更新时间,传统的做法是在每次插入或更新操作时手动设置这些时间字段,这种方式不仅繁琐,还容易遗漏,... 目录前言解决目标技术栈实现步骤1. 实体类注解配置2. 创建元数据处理器3. 服务层代码优化填充机制详