【Tensorflow+Keras】keras实现条件生成对抗网络DCGAN--以Minis和fashion_mnist数据集为例

本文主要是介绍【Tensorflow+Keras】keras实现条件生成对抗网络DCGAN--以Minis和fashion_mnist数据集为例,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1 引言

条件生成对抗网络(Conditional Generative Adversarial Nets,简称CGAN)是GAN的改进。

举例如图所示,如果使用Minist数据集

  • 在GAN中,在训练时,随机初始化一个和图片大小一致的矩阵和原始图片的矩阵进行博弈,产生一个新的类似于原始图片的网络。
  • 在Conditional GAN中,在训练时,会同时输入label,告诉当前网络生成的图片是数字8,而不是生成其他数字的图片

在这里插入图片描述

图1 GAN原理图

在这里插入图片描述

图2 Conditional GAN原理图

2 实现

Github源码

Mian.py

指定条件即条件输入是Label


import tensorflow as tf
from tensorflow.keras.datasets import fashion_mnist,mnist
import utils
from models import build_discriminator_model,build_generator_model
import numpy as np# 图片维度
noise_dim = 100
# 学习率
learning_rate = 1e-4
# 交叉熵用来计算生成器Generator和鉴别器Disctiminator的损失函数
cross_entropy = tf.keras.losses.BinaryCrossentropy(from_logits=True)
# 指定使用哪个数据集
dataset = 'fashion_mnist'
if dataset == 'mnist':(X_train, y_train), (X_test, y_test) = mnist.load_data()
if dataset == 'fashion_mnist':(X_train, y_train), (X_test, y_test) = fashion_mnist.load_data()
else:raise RuntimeError('Dataset not found')
# 数据标准化
X_train, X_test = utils.normalize(X_train, X_test)
# 初始化G和D
discriminator = build_discriminator_model()
generator = build_generator_model()
# 数据标准化
def normalize(train, test):# convert from integers to floatstrain_norm = train.astype('float32')test_norm = test.astype('float32')# normalize to range 0-1train_norm = train_norm / 255.0test_norm = test_norm / 255.0# return normalized imagesreturn train_norm, test_norm# 生成器和鉴别器的优化器
generator_optimizer = tf.keras.optimizers.Adam(learning_rate = 1e-4)
discriminator_optimizer = tf.keras.optimizers.Adam(learning_rate = 1e-4)# 鉴别器的损失函数
def discriminator_loss(real_output, fake_output):real_loss = cross_entropy(tf.ones_like(real_output), real_output)fake_loss = cross_entropy(tf.zeros_like(fake_output), fake_output)total_loss = real_loss + fake_lossreturn total_loss
# 生成器的损失函数
def generator_loss(fake_output):return cross_entropy(tf.ones_like(fake_output), fake_output)
# 保存模型
def save_models(epochs, learning_rate):generator.save(f'generator-epochs-{epochs}-learning_rate-{learning_rate}.h5')discriminator.save(f'discriminator-epochs-{epochs}-learning_rate-{learning_rate}.h5')# 训练
tf.function
def train_step(batch_size=512):# 随机产生一组下标,从训练数据中随机抽取训练集idx = np.random.randint(0, X_train.shape[0], batch_size)# 随机抽取训练集Xtrain, labels = X_train[idx], y_train[idx]with tf.GradientTape() as gen_tape, tf.GradientTape() as disc_tape:# 随机初始化一个和图片大小的矩阵z = np.random.normal(0, 1, size=(batch_size, noise_dim))# 经过生成器,产生一个图片。并指定条件是label,把label嵌入到图片中generated_images = generator([z, labels], training=True)real_output = discriminator([Xtrain, labels], training=True)fake_output = discriminator([generated_images, labels], training=True)gen_loss = generator_loss(fake_output)disc_loss = discriminator_loss(real_output, fake_output)# 打印G和D的损失函数tf.print(f'Genrator loss: {gen_loss} Discriminator loss: {disc_loss}')gradients_of_generator = gen_tape.gradient(gen_loss, generator.trainable_variables)gradients_of_discriminator = disc_tape.gradient(disc_loss, discriminator.trainable_variables)# 更新梯度generator_optimizer.apply_gradients(zip(gradients_of_generator, generator.trainable_variables))discriminator_optimizer.apply_gradients(zip(gradients_of_discriminator, discriminator.trainable_variables))
if __name__  =="__main__":epochs = 100for epoch in range(1, epochs + 1):print(f'Epoch {epoch}/{epochs}')train_step()if epoch % 500 == 0:save_models(epoch, learning_rate)

Model.py

模型采用深度卷卷积的GAN网络结构

import tensorflow as tf
from tensorflow.keras import layers
from tensorflow.keras.models import Sequential, Model
import numpy as npWIDTH, HEIGHT = 28, 28
num_classes = 10
img_channel = 1
img_shape = (WIDTH, HEIGHT, img_channel)
noise_dim = 100def build_generator_model():model = tf.keras.Sequential()model.add(layers.Dense(7*7*256, use_bias=False,input_shape=(noise_dim,)))model.add(layers.BatchNormalization())model.add(layers.LeakyReLU())model.add(layers.Reshape((7, 7, 256)))model.add(layers.Conv2DTranspose(128, (1, 1), strides=(1, 1), padding='same', use_bias=False))model.add(layers.BatchNormalization())model.add(layers.LeakyReLU())model.add(layers.Conv2DTranspose(64, (3, 3), strides=(2, 2), padding='same', use_bias=False))model.add(layers.BatchNormalization())model.add(layers.LeakyReLU())model.add(layers.Conv2DTranspose(1, (5, 5), strides=(2, 2), padding='same', use_bias=False, activation='tanh'))z = layers.Input(shape=(noise_dim,))label = layers.Input(shape=(1,))label_embedding = layers.Embedding(num_classes, noise_dim, input_length = 1)(label)label_embedding = layers.Flatten()(label_embedding)joined = layers.multiply([z, label_embedding])img = model(joined)return Model([z, label], img)def build_discriminator_model():model = tf.keras.Sequential()model.add(layers.Conv2D(64, (5, 5), strides=(2, 2), padding='same',input_shape=[28, 28, 2]))model.add(layers.LeakyReLU())model.add(layers.Dropout(0.3))model.add(layers.Conv2D(128, (5, 5), strides=(2, 2), padding='same'))model.add(layers.LeakyReLU())model.add(layers.Dropout(0.3))model.add(layers.Flatten())model.add(layers.Dense(1))img = layers.Input(shape=(img_shape))label = layers.Input(shape=(1,))label_embedding = layers.Embedding(input_dim=num_classes, output_dim=np.prod(img_shape), input_length = 1)(label)label_embedding = layers.Flatten()(label_embedding)label_embedding = layers.Reshape(img_shape)(label_embedding)concat = layers.Concatenate(axis=-1)([img, label_embedding])prediction = model(concat)return Model([img, label], prediction)

这篇关于【Tensorflow+Keras】keras实现条件生成对抗网络DCGAN--以Minis和fashion_mnist数据集为例的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/414551

相关文章

一文教你Python如何快速精准抓取网页数据

《一文教你Python如何快速精准抓取网页数据》这篇文章主要为大家详细介绍了如何利用Python实现快速精准抓取网页数据,文中的示例代码简洁易懂,具有一定的借鉴价值,有需要的小伙伴可以了解下... 目录1. 准备工作2. 基础爬虫实现3. 高级功能扩展3.1 抓取文章详情3.2 保存数据到文件4. 完整示例

使用Python实现IP地址和端口状态检测与监控

《使用Python实现IP地址和端口状态检测与监控》在网络运维和服务器管理中,IP地址和端口的可用性监控是保障业务连续性的基础需求,本文将带你用Python从零打造一个高可用IP监控系统,感兴趣的小伙... 目录概述:为什么需要IP监控系统使用步骤说明1. 环境准备2. 系统部署3. 核心功能配置系统效果展

Python实现微信自动锁定工具

《Python实现微信自动锁定工具》在数字化办公时代,微信已成为职场沟通的重要工具,但临时离开时忘记锁屏可能导致敏感信息泄露,下面我们就来看看如何使用Python打造一个微信自动锁定工具吧... 目录引言:当微信隐私遇到自动化守护效果展示核心功能全景图技术亮点深度解析1. 无操作检测引擎2. 微信路径智能获

使用Java将各种数据写入Excel表格的操作示例

《使用Java将各种数据写入Excel表格的操作示例》在数据处理与管理领域,Excel凭借其强大的功能和广泛的应用,成为了数据存储与展示的重要工具,在Java开发过程中,常常需要将不同类型的数据,本文... 目录前言安装免费Java库1. 写入文本、或数值到 Excel单元格2. 写入数组到 Excel表格

Python中pywin32 常用窗口操作的实现

《Python中pywin32常用窗口操作的实现》本文主要介绍了Python中pywin32常用窗口操作的实现,pywin32主要的作用是供Python开发者快速调用WindowsAPI的一个... 目录获取窗口句柄获取最前端窗口句柄获取指定坐标处的窗口根据窗口的完整标题匹配获取句柄根据窗口的类别匹配获取句

在 Spring Boot 中实现异常处理最佳实践

《在SpringBoot中实现异常处理最佳实践》本文介绍如何在SpringBoot中实现异常处理,涵盖核心概念、实现方法、与先前查询的集成、性能分析、常见问题和最佳实践,感兴趣的朋友一起看看吧... 目录一、Spring Boot 异常处理的背景与核心概念1.1 为什么需要异常处理?1.2 Spring B

python处理带有时区的日期和时间数据

《python处理带有时区的日期和时间数据》这篇文章主要为大家详细介绍了如何在Python中使用pytz库处理时区信息,包括获取当前UTC时间,转换为特定时区等,有需要的小伙伴可以参考一下... 目录时区基本信息python datetime使用timezonepandas处理时区数据知识延展时区基本信息

Python位移操作和位运算的实现示例

《Python位移操作和位运算的实现示例》本文主要介绍了Python位移操作和位运算的实现示例,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一... 目录1. 位移操作1.1 左移操作 (<<)1.2 右移操作 (>>)注意事项:2. 位运算2.1

如何在 Spring Boot 中实现 FreeMarker 模板

《如何在SpringBoot中实现FreeMarker模板》FreeMarker是一种功能强大、轻量级的模板引擎,用于在Java应用中生成动态文本输出(如HTML、XML、邮件内容等),本文... 目录什么是 FreeMarker 模板?在 Spring Boot 中实现 FreeMarker 模板1. 环

Qt实现网络数据解析的方法总结

《Qt实现网络数据解析的方法总结》在Qt中解析网络数据通常涉及接收原始字节流,并将其转换为有意义的应用层数据,这篇文章为大家介绍了详细步骤和示例,感兴趣的小伙伴可以了解下... 目录1. 网络数据接收2. 缓冲区管理(处理粘包/拆包)3. 常见数据格式解析3.1 jsON解析3.2 XML解析3.3 自定义