20180612-A · FIFA World Cup Audience · ggplot2 geom_treemap 矩形树状图 treemapify 画图 图例 · R 语言数据可视化 案例 源码

本文主要是介绍20180612-A · FIFA World Cup Audience · ggplot2 geom_treemap 矩形树状图 treemapify 画图 图例 · R 语言数据可视化 案例 源码,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

所有作品合集传送门: Tidy Tuesday

2018 年合集传送门: 2018

FIFA World Cup Audience


欢迎来到ggplot2的世界!

ggplot2是一个用来绘制统计图形的 R 软件包。它可以绘制出很多精美的图形,同时能避免诸多的繁琐细节,例如添加图例等。

用 ggplot2 绘制图形时,图形的每个部分可以依次进行构建,之后还可以进行编辑。ggplot2 精心挑选了一系列的预设图形,因此在大部分情形下可以快速地绘制出许多高质量的图形。如果在格式上还有额外的需求,也可以利用 ggplot2 中的主题系统来进行定制, 无需花费太多时间来调整图形的外观,而可以更加专注地用图形来展现你的数据。


在这里插入图片描述



1. 一些环境设置

# 设置为国内镜像, 方便快速安装模块
options("repos" = c(CRAN = "https://mirrors.tuna.tsinghua.edu.cn/CRAN/"))

2. 设置工作路径

wkdir <- '/home/user/R_workdir/TidyTuesday/2018/2018-06-12_FIFA_World_Cup_Audience/src-a'
setwd(wkdir)

3. 加载 R 包

library(tidyverse)
library(treemapify)# 导入字体设置包
library(showtext) 
# font_add_google() showtext 中从谷歌字体下载并导入字体的函数
# name 中的是字体名称, 用于检索, 必须严格对应想要字体的名字 
# family 后面的是代码后面引用时的名称, 自己随便起
# 需要能访问 Google, 也可以注释掉下面这行, 影响不大
# font_families_google() 列出所有支持的字体, 支持的汉字不多
# http://www.googlefonts.net/
font_add_google(name = "Karantina", family =  "ka")
font_add_google(name = "Cutive", family = "albert")
font_add_google(name = "ZCOOL XiaoWei", family = "zxw")
font_add_google(name = "Noto Sans HK", family =  "nshk")# 后面字体均可以使用导入的字体
showtext_auto()

4. 加载数据

df_input <- readr::read_csv("../data/week11_fifa_audience.csv", show_col_types = FALSE)# 简要查看数据内容
glimpse(df_input)
## Rows: 191
## Columns: 6
## $ ...1               <dbl> 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, …
## $ country            <chr> "United States", "Japan", "China", "Germany", "Braz…
## $ confederation      <chr> "CONCACAF", "AFC", "AFC", "UEFA", "CONMEBOL", "UEFA…
## $ population_share   <dbl> 4.5, 1.9, 19.5, 1.2, 2.8, 0.9, 0.9, 0.9, 2.1, 0.7, …
## $ tv_audience_share  <dbl> 4.3, 4.9, 14.8, 2.9, 7.1, 2.1, 2.1, 2.0, 3.1, 1.8, …
## $ gdp_weighted_share <dbl> 11.3, 9.1, 7.3, 6.3, 5.4, 4.2, 4.0, 4.0, 3.5, 3.1, …
# 检查数据的列名
colnames(df_input)
## [1] "...1"               "country"            "confederation"     
## [4] "population_share"   "tv_audience_share"  "gdp_weighted_share"

5. 数据预处理

df_albert <- df_input %>% # mutate() 主要用于在数据框中添加新的变量, 这些变量是通过对现有的变量进行操作而形成的dplyr::mutate(tv_per_capital = tv_audience_share/population_share) %>%# 去除缺失值na.omit()# 简要查看数据内容
glimpse(df_albert)
## Rows: 140
## Columns: 7
## $ ...1               <dbl> 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, …
## $ country            <chr> "United States", "Japan", "China", "Germany", "Braz…
## $ confederation      <chr> "CONCACAF", "AFC", "AFC", "UEFA", "CONMEBOL", "UEFA…
## $ population_share   <dbl> 4.5, 1.9, 19.5, 1.2, 2.8, 0.9, 0.9, 0.9, 2.1, 0.7, …
## $ tv_audience_share  <dbl> 4.3, 4.9, 14.8, 2.9, 7.1, 2.1, 2.1, 2.0, 3.1, 1.8, …
## $ gdp_weighted_share <dbl> 11.3, 9.1, 7.3, 6.3, 5.4, 4.2, 4.0, 4.0, 3.5, 3.1, …
## $ tv_per_capital     <dbl> 0.9555556, 2.5789474, 0.7589744, 2.4166667, 2.53571…

6. 利用 ggplot2 + treemapify 绘图

# PS: 方便讲解, 我这里进行了拆解, 具体使用时可以组合在一起
gg <- df_albert %>% ggplot(aes(area = tv_audience_share,subgroup = confederation, fill = tv_per_capital, label = country))
# geom_treemap() 绘制矩形树状图
gg <- gg + geom_treemap(colour = "#FF4500")
gg <- gg + geom_treemap_text(colour = "#F5F5F5", fontface = "italic", min.size = 3.1, reflow = TRUE)
gg <- gg + geom_treemap_subgroup_border(colour = "#F5F5F5", size = 2)
gg <- gg + geom_treemap_subgroup_text(alpha = 0.6, colour = "black")
# scale_fill_gradientn() 将颜色比例转换为概率转换颜色分布, 同时可以根据 limits, breaks, labels 设定连续型刻度的值
gg <- gg + scale_fill_gradientn(colours = c("#98FB98", "#FF4500", "#191970"), limits=c(0, 3), breaks = c(0, 1, 2, 3), labels = c(0, 1, 2, 3))
# guides() 设置图例信息
gg <- gg + guides(fill = guide_legend(title.position = "top", label.position = "bottom"))
# labs() 对图形添加注释和标签(包含标题 title、子标题 subtitle、坐标轴 x & y 和引用 caption 等注释)
gg <- gg + labs(title = expression(paste("国际足球联合会·FIFA"^"®", " 世界杯™ 收视率 2010")),x = NULL,y = NULL,fill = '收视率', caption = "资料来源: FiveThirtyEight.com - graph by 数绘小站 - 2022-10-19")
# theme() 实现对非数据元素的调整, 对结果进行进一步渲染, 使之更加美观
gg <- gg + theme(# plot.title 主标题plot.title = element_text(size = 20, face = "bold", family = 'nshk'),# plot.caption 说明文字plot.caption =  element_text(hjust = 0.85, vjust = 0, size = 10, family = 'zxw'),# legend.position 设置图例位置, 这里用坐标来指定图例具体的摆放位置legend.position = c(0.15, 0.18),# legend.direction 设置图例的方向, horizontal 表示水平方向摆放legend.direction = 'horizontal',# legend.background 设置图例的背景, 且图例边框无legend.background = element_rect(fill='#EEE8AA', colour = 'transparent'),# legend.title 设置图例标题legend.title = element_text(family = 'zxw', hjust = 0.5),# text 设置文本格式text = element_text(family = 'albert'))

7. 保存图片到 PDF 和 PNG

gg

在这里插入图片描述

filename = '20180612-A-01'
ggsave(filename = paste0(filename, ".pdf"), width = 9.2, height = 6.5, device = cairo_pdf)
ggsave(filename = paste0(filename, ".png"), width = 9.2, height = 6.5, dpi = 100, device = "png", bg = 'white')

8. session-info

sessionInfo()
## R version 4.2.1 (2022-06-23)
## Platform: x86_64-pc-linux-gnu (64-bit)
## Running under: Ubuntu 20.04.5 LTS
## 
## Matrix products: default
## BLAS:   /usr/lib/x86_64-linux-gnu/openblas-pthread/libblas.so.3
## LAPACK: /usr/lib/x86_64-linux-gnu/openblas-pthread/liblapack.so.3
## 
## locale:
##  [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C              
##  [3] LC_TIME=en_US.UTF-8        LC_COLLATE=en_US.UTF-8    
##  [5] LC_MONETARY=en_US.UTF-8    LC_MESSAGES=en_US.UTF-8   
##  [7] LC_PAPER=en_US.UTF-8       LC_NAME=C                 
##  [9] LC_ADDRESS=C               LC_TELEPHONE=C            
## [11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C       
## 
## attached base packages:
## [1] stats     graphics  grDevices utils     datasets  methods   base     
## 
## other attached packages:
##  [1] showtext_0.9-5   showtextdb_3.0   sysfonts_0.8.8   treemapify_2.5.5
##  [5] forcats_0.5.2    stringr_1.4.1    dplyr_1.0.10     purrr_0.3.4     
##  [9] readr_2.1.2      tidyr_1.2.1      tibble_3.1.8     ggplot2_3.3.6   
## [13] tidyverse_1.3.2 
## 
## loaded via a namespace (and not attached):
##  [1] lubridate_1.8.0     assertthat_0.2.1    digest_0.6.29      
##  [4] utf8_1.2.2          R6_2.5.1            cellranger_1.1.0   
##  [7] backports_1.4.1     reprex_2.0.2        evaluate_0.16      
## [10] highr_0.9           httr_1.4.4          pillar_1.8.1       
## [13] rlang_1.0.6         curl_4.3.3          googlesheets4_1.0.1
## [16] readxl_1.4.1        rstudioapi_0.14     jquerylib_0.1.4    
## [19] rmarkdown_2.16      textshaping_0.3.6   googledrive_2.0.0  
## [22] bit_4.0.4           munsell_0.5.0       broom_1.0.1        
## [25] compiler_4.2.1      modelr_0.1.9        xfun_0.32          
## [28] systemfonts_1.0.4   pkgconfig_2.0.3     htmltools_0.5.3    
## [31] ggfittext_0.9.1     tidyselect_1.1.2    fansi_1.0.3        
## [34] crayon_1.5.2        tzdb_0.3.0          dbplyr_2.2.1       
## [37] withr_2.5.0         grid_4.2.1          jsonlite_1.8.2     
## [40] gtable_0.3.1        lifecycle_1.0.3     DBI_1.1.3          
## [43] magrittr_2.0.3      scales_1.2.1        vroom_1.5.7        
## [46] cli_3.4.1           stringi_1.7.8       cachem_1.0.6       
## [49] farver_2.1.1        fs_1.5.2            xml2_1.3.3         
## [52] bslib_0.4.0         ragg_1.2.3          ellipsis_0.3.2     
## [55] generics_0.1.3      vctrs_0.4.2         tools_4.2.1        
## [58] bit64_4.0.5         glue_1.6.2          hms_1.1.2          
## [61] parallel_4.2.1      fastmap_1.1.0       yaml_2.3.5         
## [64] colorspace_2.0-3    gargle_1.2.1        rvest_1.0.3        
## [67] knitr_1.40          haven_2.5.1         sass_0.4.2

测试数据

配套数据下载:FIFA World Cup Audience

这篇关于20180612-A · FIFA World Cup Audience · ggplot2 geom_treemap 矩形树状图 treemapify 画图 图例 · R 语言数据可视化 案例 源码的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/414249

相关文章

C语言中%zu的用法解读

《C语言中%zu的用法解读》size_t是无符号整数类型,用于表示对象大小或内存操作结果,%zu是C99标准中专为size_t设计的printf占位符,避免因类型不匹配导致错误,使用%u或%d可能引发... 目录size_t 类型与 %zu 占位符%zu 的用途替代占位符的风险兼容性说明其他相关占位符验证示

SpringBoot多环境配置数据读取方式

《SpringBoot多环境配置数据读取方式》SpringBoot通过环境隔离机制,支持properties/yaml/yml多格式配置,结合@Value、Environment和@Configura... 目录一、多环境配置的核心思路二、3种配置文件格式详解2.1 properties格式(传统格式)1.

解决pandas无法读取csv文件数据的问题

《解决pandas无法读取csv文件数据的问题》本文讲述作者用Pandas读取CSV文件时因参数设置不当导致数据错位,通过调整delimiter和on_bad_lines参数最终解决问题,并强调正确参... 目录一、前言二、问题复现1. 问题2. 通过 on_bad_lines=‘warn’ 跳过异常数据3

RabbitMQ消费端单线程与多线程案例讲解

《RabbitMQ消费端单线程与多线程案例讲解》文章解析RabbitMQ消费端单线程与多线程处理机制,说明concurrency控制消费者数量,max-concurrency控制最大线程数,prefe... 目录 一、基础概念详细解释:举个例子:✅ 单消费者 + 单线程消费❌ 单消费者 + 多线程消费❌ 多

C语言进阶(预处理命令详解)

《C语言进阶(预处理命令详解)》文章讲解了宏定义规范、头文件包含方式及条件编译应用,强调带参宏需加括号避免计算错误,头文件应声明函数原型以便主函数调用,条件编译通过宏定义控制代码编译,适用于测试与模块... 目录1.宏定义1.1不带参宏1.2带参宏2.头文件的包含2.1头文件中的内容2.2工程结构3.条件编

Go语言并发之通知退出机制的实现

《Go语言并发之通知退出机制的实现》本文主要介绍了Go语言并发之通知退出机制的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 目录1、通知退出机制1.1 进程/main函数退出1.2 通过channel退出1.3 通过cont

C#监听txt文档获取新数据方式

《C#监听txt文档获取新数据方式》文章介绍通过监听txt文件获取最新数据,并实现开机自启动、禁用窗口关闭按钮、阻止Ctrl+C中断及防止程序退出等功能,代码整合于主函数中,供参考学习... 目录前言一、监听txt文档增加数据二、其他功能1. 设置开机自启动2. 禁止控制台窗口关闭按钮3. 阻止Ctrl +

java如何实现高并发场景下三级缓存的数据一致性

《java如何实现高并发场景下三级缓存的数据一致性》这篇文章主要为大家详细介绍了java如何实现高并发场景下三级缓存的数据一致性,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 下面代码是一个使用Java和Redisson实现的三级缓存服务,主要功能包括:1.缓存结构:本地缓存:使

Go语言编译环境设置教程

《Go语言编译环境设置教程》Go语言支持高并发(goroutine)、自动垃圾回收,编译为跨平台二进制文件,云原生兼容且社区活跃,开发便捷,内置测试与vet工具辅助检测错误,依赖模块化管理,提升开发效... 目录Go语言优势下载 Go  配置编译环境配置 GOPROXYIDE 设置(VS Code)一些基本

在MySQL中实现冷热数据分离的方法及使用场景底层原理解析

《在MySQL中实现冷热数据分离的方法及使用场景底层原理解析》MySQL冷热数据分离通过分表/分区策略、数据归档和索引优化,将频繁访问的热数据与冷数据分开存储,提升查询效率并降低存储成本,适用于高并发... 目录实现冷热数据分离1. 分表策略2. 使用分区表3. 数据归档与迁移在mysql中实现冷热数据分